Experimental Design for Optimization of β-Xylosidase Production by A. fumigatus Isolated from the Atlantic Forest (Brazil)

Main Article Content

Fabíola Giovanna Nesello Vieira
Divair Christ
Luciana Graciano
Juliana Moço Corrêa
Marina Kimiko Kadowaki
José Luis da Conceição Silva
Rinaldo Ferreira Gandra
Alexandre Maller
Maria de Lourdes Teixeira de Moraes Poli
Rita de Cássia Garcia Simão


The production of β-Xylosidase by a new strain of Aspergillus fumigatus (PC-7S-2 M), isolated from the Brazilian Atlantic Forest, was analyzed at 28°C using modified Czapeck media supplemented with different agroindustrial residues at 1% (w/v). Conidia were inoculated for 7 days, and the best activity for β- Xylosidase was obtained in the presence of barley brewing residue after 4 days (15 U mL-1). To optimize the production of β-Xylosidase, this carbon source was used for a central composite rotational design (CCRD) to obtain a significance level of p < 0.10, which predicted an enzyme activity of 245.04 U mL-1. The model validation revealed β-Xylosidase activity was optimized at 229.06 U mL-1. Furthermore, the production of intracellular A. fumigatus β-Xylosidase increased by 1,500% (15 times) over that initially obtained, achieving 93.47% of the predicted model. This finding obtained during two years emphasizes the availability of A. fumigatus β-Xylosidase production with possible applications in biotechnological processes.

Barley brewing residue, experimental design, agroindustrial residue, hemicellulose, β-Xylosidase, Aspergillus fumigatus

Article Details

How to Cite
Vieira, F., Christ, D., Graciano, L., Corrêa, J., Kadowaki, M., Silva, J., Gandra, R., Maller, A., Moraes Poli, M. de L., & Simão, R. (2019). Experimental Design for Optimization of β-Xylosidase Production by A. fumigatus Isolated from the Atlantic Forest (Brazil). Journal of Advances in Biology & Biotechnology, 21(3), 1-16. https://doi.org/10.9734/jabb/2019/v21i330093
Original Research Article


Liu C, Tao S, Du JH, Wang J. Response surface optimization of fermentation conditions for producing xilanase by Aspergillus niger SL-05. Journal Industrial Microbiology & Biotechnology 2008;35: 703-711.
DOI: 10.1007/s10295-008-0330

Teng C, Jia H, Yan Q, Xhou P, Jiang Z. High-level expression of extracellular secretion of a β- Xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresource Technology. 2011;102: 1822-1830.
DOI: 10.1016/j.biortech.2010.09.055

Lasrado LD, Gudipati M. Purification and characterization of β-d-Xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydrate Polymers. 2013;92:1978-1983.
DOI: 10.1016/j.carbpol.2012.11.081

Oliveira NM, Bento FM, Camargo FAO, Knorst AJ, Santos AL, Pizzolato TM, Peralba MCR. Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a land-farming site. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. 2011;46:86-96.
DOI: 10.1080/10934529.2011.526909

Benassi VM, Lucas RC, Michelin M, Jorge JA, Terenzi HF, Polizeli MLTM. Production and action of an Aspergillus phoenicis enzymatic pool using different carbon sources. Brazilian Journal of Food Technology. 2012;15:253-260.

Wongwisansri S, Promdonkoy P, Matetaviparee P, Roongsawang N, Eurwilaichitr L, Tanapongpipat S. High-level production of thermotolerant β-Xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: Characterization and its application in ethanol production. Bioresource Technology. 2013;132:410-413.
DOI: 10.1016/j.biortech.2012.11.117

Jin X-C, Liu C-Q, Xhu Z-H, Tao, W-Y. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol. 2007;74:239-243.
DOI: 10.1007/s00253.006.0658-1

Saqib AAN, Hassan M, Khan NF, Baig S. Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid-state fermentation (SSF) and submerged fermentation (SmF). Process Biochemistry. 2010;45:641-646.
DOI: 10.1016/j.procbio.2009.12.011

Sena J, Rojas D, Montiel E, González H, Moret J, Naranjo L. A strategy to obtain axenic cultures of Arthrospira spp cyanobacteria. World J Microbiol Biotechnol. 2011;27:1045-1053.
DOI: 10.1007/s11274-010-0549-6

Simão RCG, Souza CGM, Peralta RM. Induction of xilanase in Aspergillus tamari by methyl β-D-Xylosidase. Appl Microbiol Biotechnol. 1997;47:267-271.
DOI: 10.1007/s002530050925

McIlvaine TC. A buffer solution for colorimetric comparison. Journal Biological Chemistry. 1921;49:183-186.
Available:http://www.jbc.org/content/49/1/183.citation.full.ht ml#ref-list-1

Saini J, Anurag RK, Arya A, Kumbhar BK, Tewari L. Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Industrial Crops and Products. 2013;44:211-219.
DOI: 10.1016/j.indcrop.2012.11.011

Sukhbaatar B, Hassan EB, Kim M, Steele P, Ingram L. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydrate Polymers. 2014;101:196-202.
DOI: 10.1016/j.carbpol.2013.09.027

Walia A, Mehta P, Chauhan A, Shirkot CK. Optimization of cellulase-free Xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Annals of Microbiology. 2013;63:187-198.
DOI: 10.1007/s13213-012-0460-5

Córdova FJC, León AMG, Regalado ES, González MNS, Ramírez TL, Avalos BCG, Medrano JAL. Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus. Journal of Environmental Management. 2012;95:S77-S82.
DOI: 10.1016/j.jenvman.2011.01.004

Corrêa JM, Christi D, Della Torre CL, Henn C, da Conceição-Silva JL, Kadowaki MK, Simão RCG. High levels of -xylosidase in Thermomyces lanuginosus: Potential use for saccharification. Brazilian Journal of Microbiology. 2016;47:680-690.

Cintra LC, Fernandes AG, Oliveira ICM, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, Faria FP. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol. 2017;105(Pt 1):262-271.
DOI: 10.1016/j.ijbiomac.2017.07.039

Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA. Production of Xylanase and -Xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering. 2012;35:1185–1192.
DOI: 10.1007/s00449-012-0705-5

Marcolongo L, La Cara F, del Monaco G, Paixão SM, Alves L, Marques IP, Ionata E. A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification. International Journal of Biological Macromolecules. 2019;122:1224–1234.
DOI: 10.1016/j.ijbiomac.2018.09.075

Omardien S. Bioprospecting for β-glucosidases and β-Xylosidases from non-Saccharomyces yeast; 2013.

Available:http://hdl.handle.net/10019.1/80152 (Accessed 30 September 2014)

Knob A, Carmona EC. Cell-associated acid β-Xylosidase production by Penicillium sclerotiorum New Biotechnology. 2009;26:60-67.
DOI: 10.1016/j.nbt.2009.03.002

Rodrigues MI, Iemma AF. Experiment design and process optimization. CRC Press, London; 2014.

Vaithanomsat P, Songpim M, Malapant T, Kosugi A, Thanapase W, Mori Y. Production of β-glucosidase from a newly isolated Aspergillus species using response surface methodology. International Journal of Microbiology; 2011.
DOI: 10.1155/2011/949252

Zimbardi ALRL, Sehn C, Meleiro LP, Souza FHM, Masui DC, Nozawa MSF, Guimarães LHS, Jorge JA, Furriel RPM. Optimization of β-Glucosidase, β-Xylosidase and Xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. International Journal of Molecular Sciences. 2013;14:2875-2902.
DOI: 10.3390/ijms14022875

Sherief AA, El-Tanash AB, Atia N. Cellulase production by Aspergillus fumigatus grown onmixed substrate of rice straw and wheat bran. Research Journal of Microbiology. 2010;5:199-211.
DOI: 10.3923/jm.2010.199.211

Abdeshahian P, Samat N, Yusoff WMW. Production of β-Xylosidase by Aspergillus niger FTCC 5003 using palm kernel cake in a packed-bed bioreactor. Journal of Applied Sciences. 2010;10:419-424.
DOI: 10.3923/jas.2010.419.424

Lenartovicz V, Souza CGM, Moreira FG, Peralta RM. Temperature and carbon source affect the production and secretion of a thermostable β-Xylosidase by Aspergillus fumigatus. Process Biochemistry. 2003;38:1775-1780.
DOI: 10.1016/S0032-9592(02)00261-3

Gottschalk LMF, Paredes RS, Teixeira RSS, Silva ASA, Bon EPS. Efficient production of lignocellulolytic enzymes Xylanase, β-Xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Brazilian Journal of Microbiology. 2013;44:569-576.
DOI: 10.1590/S1517-83822013000200037