Protocol Optimization of DNA Extraction from Banana Fruits

Denis Omara a and Banson John Barugahare a,b*

a Department of Biology, Faculty of Science & Education, Busitema University, Uganda. b Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Uganda.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JABB/2022/v25i430274

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/88039

Received 11 April 2022
Accepted 21 June 2022
Published 23 June 2022

ABSTRACT

Background: DNA extraction is the process by which the DNA is extracted and purified from the living or dead cells or tissues. There are many different kits commercially available for DNA extraction, with varying protocols. This study aimed at determining the optimal conditions for the extraction of high yield DNA from banana fruits.

Methodology: DNA was extracted from banana fruits by precipitation method. The DNA yield was determined using the Nanodrop DNA quantification technique.

Results: The optimal sodium chloride salt concentration for DNA extraction from banana fruits was 4mM and the amount of DNA extracted increased as the temperature decreased. The highest yield was obtained between 4 °C to 0 °C.

Conclusion: We report for the first time a protocol with an optimal salt concentration (NaCl, 4mM) for quality DNA yield from banana fruits. A critical consideration is required to establish an optimal range of moderate temperatures and DNA concentrations for better quality and desired yields. There may not be a universal protocol for DNA extraction from all plant materials.

Keywords: DNA extraction; banana fruits; sodium ion salt concentration; temperature.

*Corresponding author: E-mail: barugahare@gmail.com, barugahare@googlemail.com;
1. INTRODUCTION

DNA extraction is the process by which the DNA is purified from the living or dead cells or tissues. Currently, DNA extraction is a routine procedure in molecular biology [1]. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes [1,2]. There are many different protocols and, kits commercially available for DNA extraction from different plant materials [2-10]. Varying amounts and integrity of DNA are obtained due to the inherent properties as it were, and, differences in the optimization of the protocols for DNA extraction [11,12].

Water is a polar molecule that has a partial negative charge near the oxygen atom due to the unshared pairs of electrons, and partial positive charges near the hydrogen atoms [13]. Because of these charges, polar molecules like DNA can interact electrostatically with the water molecules, allowing them to easily dissolve in water [13]. DNA is hydrophilic due to the negatively charged phosphate (PO3–) groups along the sugar-phosphate backbone hence being soluble in water [13].

The role of the salt is to neutralize the charges on the sugar-phosphate backbone [13]. Varying concentrations of salts are used when extracting DNA using different protocols. In this study we determined the optimal salt concentration that yields high amount of DNA from banana fruits.

Incubation of the nucleic acid/salt/ethanol mixture at low temperatures (−20° or −80°C) is universally cited as a necessary step in the DNA extraction protocols. Nevertheless, there are still discontents to this establishment due to the fact that at concentrations as low as 20 ng/μl, nucleic acids precipitate at 0–4°C [14]. In addition, there are different DNA extraction kits in phase with the outstanding discrepancy [8,9]. This study addressed the differences in the incubation temperatures and effect of salt concentration optimal for the extraction of DNA, particularly from banana fruits.

2. METHODOLOGY

2.1 Determination of the Effect of NaCl Concentration on the DNA Yield

A mixture of 25g of peeled banana (Musa acuminata) fruit and 50 ml of nuclease free water (Cat.W4502, Sigma Aldrich, Darmstadt, Germany) was blended to dissociate cells and strained to yield a banana fruit solution. Ten (10) ml of 10 % Sodium Dodecyl Sulfate SDS (Cat. MB-15, Rockland, Inc., USA) was added into the strained banana fruit solution to lyse the cells and release the DNA. The solution was stirred for 10 minutes at room temperature. The mixture was centrifuged for 5 minutes at 8000 rpm to separate the debris from the solution. The supernatant was aliquoted into 20 eppendorf tubes each containing 1 ml of the supernatant. Different amounts of sodium chloride salt were calculated, weighed, and dissolved in each of the solutions to make different salt concentrations (0.25 mM, 0.50 mM, 0.75 mM, 1.00 mM, 1.25 mM, 1.50 mM, 1.75 mM, 2.00 mM, 2.25 mM, 2.50 mM, 2.75 mM, 3.00 mM, 3.25 mM, 3.50 mM, 3.75 mM, 4.00 mM, 4.25 mM, 4.50 mM, 4.75 mM, and 5.00 mM). Each solution was stirred for 5 minutes. Then, 2 ml of 99.5mM isopropanol (Cat. I9516, Sigma Aldrich, Darmstadt, Germany) kept at a given temperature was added gently down the side of the respective tubes to precipitate DNA in the solution. The solution was applied into the QIAamp Mini column and centrifuged at 8,000 rpm for 1 minute to bind the DNA to silica column. The DNA was washed using 500 μL of Qiagen DNA wash buffers. The DNA was eluted in 100 μl of nuclease free water. DNA concentration was determined using NanoDrop™ 2000 Spectrophotometer (Cat. ND-2000, ThermoFisher) and the total amount of DNA extracted was determined.

2.2 Determination of the Effect of Temperature on the DNA Yield

The DNA extraction was performed as described in section 2.1 while varying the temperature of 99.5% absolute isopropanol from -10 °C to 100 °C in 5 °C increments at a constant concentration of NaCl of 4 mM. These temperatures were achieved using incubators and extreme low and high temperatures were achieved using fridge/freezer and oven respectively while monitoring using a thermometer.

2.3 Data Analysis

The Pearson’s product moment correlation coefficient was used to determine the relationship between the concentration of the sodium chloride salt used and the amount of DNA extracted and the relationship between the temperature and the amount of DNA extracted because the variables are bivariate, and the salt
concentrations and isopropanol temperatures were measured on a fixed interval.

3. RESULTS

3.1 Effect of Salt Concentration on the DNA Yield

We established that 4mM was the optimal salt concentration at which the maximum yield of DNA was obtained (Fig. 1A). This can be rationalized as the mass of salt to mass of sample solution of 1:25 (Fig. 1A). There was a very strong positive and significant correlation between the sodium chloride concentration and the amount of DNA extracted before the optimal concentration of sodium chloride (Fig. 1B; \(r = 0.998; P = 0.001 \)). There was also a very strong negative and significant correlation between the sodium chloride concentration and the amount of DNA extracted after the optimal concentration of sodium chloride salt (Fig. 1C; \(r = -0.995; P = 0.001 \)).

3.2 Effect of Temperature on the DNA Yield

There was a very strong negative and significant correlation between the temperature and the amount of DNA extracted (Fig. 2; \(r = -0.997; P = 0.001 \)).

4. DISCUSSION

Salt concentration is critical for quality DNA extraction especially from plant materials [3-7,10,15-18]. In fact, there are many different protocols and kits considering the importance salt concentration which have been used for DNA extraction from different plant tissues including banana [3-7,10,16,17,19,20]. We report for the first time a protocol with an optimal salt concentration (NaCl, 4mM) for quality DNA yield from banana fruits. This result is in phase with other reported protocols for DNA extraction from other plant materials [6,7,10]. On the other hand, we report a higher optimal salt concentration than earlier on reported [4,5]. There may not be a universal protocol for DNA extraction from all plant tissues as has been claimed [4,5]. Indeed, plant tissues defer in complexities, thus, DNA extraction protocols may have to vary to remain relevant to the desired quality yields [9].

The effects of temperature DNA concentration, stability and yield have been elucidated [15,21,22]. We report a very strong negative and significant correlation between the temperature and the amount of DNA extracted. Our finding is consistent with the previous reports [12,19,21]. It is, therefore, critical to establish an optimal range of moderate temperatures and DNA concentrations for better quality and desired yields.

![Fig. 1. Effects of salt concentration on the DNA yield: A is the DNA yield across various salt concentrations, B is the correlation between the sodium chloride salt concentration and the amount of DNA extracted before the optimal concentration of sodium chloride salt (r = 0.998; P = .001) and C is correlation between the salt concentration and the amount of DNA extracted after the optimal concentration of salt (r = -0.995; P = .001)](image-url)
5. CONCLUSION

We report for the first time a protocol with an optimal salt concentration (NaCl, 4mM) for quality DNA yield from banana fruits. A critical consideration is required to establish an optimal range of moderate temperatures and DNA concentrations for better quality and desired yields. Nevertheless, DNA yield from plant materials is not solely dependent on the salt concentration and temperature. There are also other factors including the plant complexity and tissue type that could influence the yield and quality of DNA extracted from a given plant sample. There may not be a universal protocol for DNA extraction from all plant materials.

ACKNOWLEDGEMENTS

This study was funded by the government of Uganda under the national merit program. We acknowledge the laboratory and entire staff, at the Biology Department, Faculty of Science and Education whose efforts were invaluable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Wink M, Yousef AE, Carstrom C. An Introduction to Molecular Biotechnology.

© 2022 Omara and Barugahare; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/88039