Prospection of Plant Growth-promoting Rhizobacterium Enterobacter cloacae and N2-fixing Rhizobium leguminosarum bv. viciae Effect on Faba Bean Evaluation in Sustainable Agriculture

Main Article Content

Ibrahim El-Akhdar
Azza Ghazi

Abstract

Biofertilizers are relying on ecofriendly approaches as sustainability and environmental safety of agricultural for crop production. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP) and N2-fixing bacteria strengthened to use biofertilizers in modern agriculture. Prospection study of Enterobacter cloacae KX034162 as PGPR was carried out in this study. Based on in vivo assays for PGPRs characterization; Exopolysaccharides production (EPS), biofilm formation, Phosphate, Zinc carbonate and zinc oxide solubilization and productivity of indole acetic acid (IAA) E. cloacae KX034162 was used. The synergistic inoculation effect of two microbial on faba bean (Vicia faba L.) growth parameters and productivity were evaluated in two successful winter seasons. The results showed that the dual inoculation of both microbes have a significant positive effect on the estimated parameters compared with the control. E. cloacae KX034162 produced IAA (47.0 mgl-1), polysaccharides (6.4 gl-1) and solubilized Zn. The dual inoculation enhanced nutrients absorption, nodulation, growth parameters, N% (it was 1.42 and 1.44 in the first and second season compared with 0.29 and 0.30 as un-inoculated treatments, respectively) and at the end faba bean production increased.

Keywords:
IAA, Rhizobium leguminosarum bv. viciae, Enterobacter cloacae KX034162, faba bean, polysaccharide.

Article Details

How to Cite
El-Akhdar, I., & Ghazi, A. (2020). Prospection of Plant Growth-promoting Rhizobacterium Enterobacter cloacae and N2-fixing Rhizobium leguminosarum bv. viciae Effect on Faba Bean Evaluation in Sustainable Agriculture. Journal of Advances in Biology & Biotechnology, 22(4), 1-11. https://doi.org/10.9734/jabb/2019/v22i430130
Section
Original Research Article

References

FAO. FAOSTAT Database. Food and Agriculture Organization of the United Nations; 2017.
Available:www.fao.org/faostat/
[Accessed June 11, 2017]

Longobardi F, Sacco D, Casiello G, Ventrella A, Sacco A. Chemical profile of the carpino broad bean by conventional and innovative physicochemical analyses. J. Food Qual. 2015;38:273–284.

DOI: 10.1111/jfq.12143

Neme K, Bultosa G, Bussa N. Nutrient and functional properties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours. Int. J. Food Sci. Technol. 2015;50:2375–2382.
DOI: 10.1111/ijfs. 12903.

Turco I, Ferretti G, Bacchetti T. Review of the health benefits of faba bean (Vicia faba L.) polyphenols. J. Food Nutr. Res. 2016;55:283–293.

Landry EJ, Fuchs SJ, Hu J. Carbohydrate composition of mature and immature faba bean seeds. J. Food Compos. Anal. 2016;50:55–60.
DOI: 10.1016/j. jfca.2016.05.010

Jensen E, Peoples MB, Hauggaard-Nielsen H. Faba bean in cropping systems. Field Crops Res. 2010;115:203–216.
DOI: 10.1016/j.fcr.2009.10.008

Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015;7:96–102.
DOI: 10.4172/1948-5948.1000188.

Dobbelaere S, Vanderleyden J, Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci. 2003;22(2):107–49.
DOI:10.1080/713610853

Ogut M, Er F, Kandemir N. Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils. 2010;46(7):707–15.
DOI:10. 1007/s00374-010-0475-7

Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH. Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res. 2012;50:361-372.

Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;1-15.

Ahmad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Uni. Sci. 2014;26:1–20.

Desai S, Praveen K, Leo DA, Bagyaraj DJ, Ashein R. Exploiting PGPR and AMF biodiversity for plant health management. In: Microbial inoculants in sustainable agricultural productivity, Singh DP, et al. (Eds), Springer, India. 2016; 145-160.

Paul D, Nair S. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J. Basic Microbiol. 2008;48(5):378–84.
DOI:10.1002/jobm. 200700365

Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microb. Biotechnol. 2012;28:1327–1350.

Yadav J, Verma JP. Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur. J. Soil Biol. 2014;63:70–77.

Adak MS, Kibritci M. Effect of nitrogen and phosphorus levels on nodulation and yield components in faba bean (Vicia faba L.). Legume Res. 2016;39:991–994.

Argaw A, Mnalku A. Effectiveness of native Rhizobium on nodulation and yield of faba bean (Vicia faba L.) in Eastern Ethiopia. Arch. Agron. Soil Sci. 2017;63:1390–1403.
DOI: 10.1080/03650340.2017.1287353.

Julie R, Ryu, Cheryl L. Patten. Aromatic Amino Acid-Dependent Expression of Indole-3-Pyruvate Decarboxylase Is Regulated by TyrR in Enterobacter cloacae uw5. Journal of Bacteriology, Nov. 2008;190(21):7200–7208.
DOI:10.1128/JB.00804-08

Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011;3:a001438.

Qurashi AW, Sabri AN. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol. 2012;43:1183-1191.

Arora NK, Tewari S, Singh R. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs In: Arora NK (ed.) Plant Microbe Symbiosis: Fundamentals and Advances. Springer. 2013;411-449.

Tewari S, Arora NK. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Current Microbiol. 2014;69:484-494.

Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci. 2010; 56:73-98.

Pandey P, Maheshwari DK. Two sp. microbial consortium for growth promotion of Cajanus Cajan. Curr Sci. 2007;92:1137-1142.

Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil. 2013;366:585–603.
DOI: 10.1038/nplants.2016.43.

Souza R, Meyer J, Schoenfeld R, Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol. 2015;65: 951–964.
DOI: 10.1007/s13213-014-0939-3.

Marag PS, Suman A, Gond S. Prospecting endophytic bacterial colonization and their potential plant growth promoting attributes in hybrid maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2018;7:1292–1304.
DOI: 10.20546/ijcmas.2018.703.154

Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol. 2017;17:209.
DOI: 10.1186/s12866-017-1117-0

Abd El-Gwad AM, Salem EMM. Effect of Biofertilization and Silicon Foliar Application on Productivity of Sunflower (Helianthus annuus L.) under New Valley Conditions. Egypt. J. Soil Sci. 2013;53(4):509-536.

Vincent JM. A manual for practical study of root-nodule bacteria" IBP Hand book, No. 15 Blackwell Scientific publication. Oxford and Edinburgh. 1970;54-58.

Sarwar M, Arshad M, Martens DA, Jr Frankenberger WT. Tryptophan dependent biosynthesis of auxins in soil. Plant Soil. 1992;147:207–215.
DOI:10.1007/BF00029072.

Ashraf M, Berge SH, Mahmood OT. Inoculating wheat seedlings with exopolysaccharide-producing bacteri are strict sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils. 2004;40:157–162.

Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate solubilizing bacteria. Curr. Microbial. 2001;43:51–58.

DOI: 10.1007/s002840010259.

Bakker AW, Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. Mediated plant growth stimulation. Soil Biol. Biochem. 1987;19:451-457.

Hidayati E, Triwahyudi A, Suwanto A, Widyastuti R. Abundance of Culturable Bacteria Isolated from Maize Rhizosphere Soil Using Four Different Culture Media. Microbiology. 2013;8(1):33-40.
[ISSN 1978-3477]
[eISSN 2087-8587]
Available:http://jurnal.permi.or.id/index.php/mionline
DOI: 10.5454/mi.8.1.5

Allen ON. Experiments in soil bacteriology. Burgess Publishing Co. Minneopolis 15; Minnesota U.S.A; 1959.

Thompson JA. Inhibition of nodule bacteria by an antibiotic from legume seed coats. Nature. 1960;187:614-620. London.

Richards LA (ed.). Diagnosis and improvement of saline and alkaline soils. U.S.D.A. Agric, Handbook No. 60; 1954.

Steel RGD, Torrie JH. Principles and procedures of statistics 2nd Ed. McGraw Hill, Newyork; 1980.

Brandl MT, Lindow SE. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 1996; 62:4121–4128.

Costacurta A, Keijers V, Vanderleyden J. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet. 1994;243: 463–472.

Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002;68:3795–3801.

Kuo T, Kosuge T. Role of amino transferase and indole-3- pyruvic acid in the synthesis of indole-3-acetic acid in Pseudomonas savastanoi. J. Gen. Appl. Microbiol. 1970;16:191–204.

Schroder G, Waffenschmidt S, Weiler EW, Schroder J. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 1984;138: 387–391.

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2013;2:587.

Peters NK, Crist-Estes D. Nodule formation is stimulated by the ethylene inhibitor aminoethyoxyvinylglycine. Plant Physiol. 1989;91:690-693.

Lee KH, La Rue TA. Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol. 1992;100:1759-1763.

Heidstra RW, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development. 1997;124:1781-1787.

Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 1998;190: 63-68.

Glick BR, Patten CL, Holguin G, Penrose DM. Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London, United Kingdom. 1999; 134-179.

Penrose DM, Glick BR. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 2001;47:368-372.

Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem. 2009;41(9): 1768–1774.

Cocking EC. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil. 2003; 252(1):169–175.

Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol. 2014; 14:130.

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013;11: 789–799.