Preliminary Study on the In vivo Anti-neuroinflammatory Effects of Khaya grandifoliola and Cymbopogon citratus Polysaccharide Fractions

Main Article Content

K. F. Mediesse
G. Matharasala
T. Boudjeko
P. Yogeeswari


Aims: To determine the effects of polysaccharide fractions named KGF and CCF respectively for Khaya grandifoliola stem bark and Cymbopogon citratus leaves on Central Nervous System (CNS) depression and on systemic lipopolysaccharide (LPS)-induced brain inflammation and hyperalgesia in BALB/c.

Methodology: BALB/c mice weighing about 25-35 g were used for the experimentation. Depressant effects of polysaccharide fractions were firstly evaluated using Rota Rod and Actophotometer apparatus. Secondly, LPS or saline solution (5 mg/kg) was Intraperitoneally administered (i.p.) 1 hour after oral administration of polysaccharide fractions (100 mg/kg test dose, p.o.) or distilledwater. Then, the hot plate and tail-flick models were performed 1 hour after LPS injection to determine thermal hyperalgesia and brain inflammation, was examined 3 hours after LPS injection by Luminex assay.

Results:Systemic LPS administration resulted in a reduction of pain response latency and an increasing expression of nuclear factor-κB (NF-κB) and pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, tumor necrosis factor- α (TNF-α) genes in brain after 24 hours. From the results it was observed that treatment with KGF and CCF (100 mg/kg, p.o) significantly attenuated LPS-induced hyperalgesia and overexpression of brain levels of IL-1β, IL-6 and TNF-α genes dependent on inhibition of the NF-κB signaling pathway in BALB/c without CNS depressant properties.

Conclusion: The present findings confirm the potential of KGF and CCF in the treatment of neuroinflammation-related diseases and it warrant further testing for the development of a new chemical entities. However further studies are required for determination of effective dose and mechanism of action associated.

Polysaccharides, Khaya grandifoliola, Cymbopogon citratus, anti-neuroinflammation, In vivo.

Article Details

How to Cite
Mediesse, K. F., Matharasala, G., Boudjeko, T., & Yogeeswari, P. (2020). Preliminary Study on the In vivo Anti-neuroinflammatory Effects of Khaya grandifoliola and Cymbopogon citratus Polysaccharide Fractions. Journal of Advances in Biology & Biotechnology, 23(5), 23-32.
Original Research Article


Schwartz K. Inflammations et maladies: clés de compréhension. Inserm; 2011.

Block L. Inflammation and Pain. .Department of Anaesthesiology and Intensive Care Institute of Clinical Sciences, Sahlgrenska Academy. University of Gothenburg; 2014.

Calvo M, Dawes JM, Bennett DL. The role of the immune system in the generation of neuropathic pain. Lancet neurology. 2012;11: 629-642.


Tenorio G, Kulkarni A, Kerr BJ. Resident glial cell activation in response to peri-spinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain. Pain. 2013;154:71-81.


Fu HQ, Yang T, Xiao W, Fan L, Wu Y, Terrando N, Wang TL. Prolonged Neuroinflammation after Lipopolysaccharide Exposure in Aged Rats. PLoS ONE. 2014;9(8).


Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS Causes Chronic Neuro-inflammation and Progressive Neurodegeneration. Glia 1. 2007;55:453-462.


Mimche PN, Taramelli D, Vivas L. The plant-based immunomodulator curcumin as potential candidate for the development of an adjunctive therapy for cerebral malaria. Malaria Journal. 2011;10(1):S10.


Reshma CA. Design of Dual Inhibitors of ROCK-I and NOX2 to Attenuate Neuroin-flammation in Neurological Disorders: High Throughput Virtual and Biological screening. Ph.D. Thesis. Birla Institute of Technology and Science, India; 2015.

Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Research. 1989;491:394-397.


Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H. Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1 beta, and expression of caspase-11 in mice. Journal of Biological Chemistry. 2004;279:51647-51653.


Néant R. Effets indésirables des anti-inflammatoires non stéroïdiens et automédication : quel est l’impact dans le temps d’un outil d’information écrite sur les connaissances des patients ? Étude prospective auprès de 223 patients consultant en médecine générale au sein d’une maison de santé rurale bourguignonne. Thèse de Doctorat. Université de Bourgogne, France; 2017.

Grandin M. Les anti-inflammatoires non stéroïdiens, utilisation et conseils dans la pratique officinale quotidienne. Document étayé par une analyse d’ordonnances d’une pharmacie rurale. Thèse de Doctorat. Université d’Angers, France; 2013.

Moundipa PF, Njayou FN, Yanditoum S, Sonké B, Tchouanguep FM. Medicinal plants used in the Bamun region of the Western province of Cameroon against jaundice and other liver disorders. Cameroon Journal of Biological and Biochemical Sciences. 2002;2:39-46.

Tiwari M, Dwivedi UN, Kakkar P. Suppression of oxidative stress and pro-inflammatory mediators by Cymbopogon citratus D. Stapf extract in lipopolysaccharide stimulated murine alveolar macrophages. Food Chemistry Toxicology. 2010;48:2913-9.


Thangam R, Sathuvan M, Poongodi A, Suresh V, Pazhanichamy K, Sivasubramanian S, Kanipandian N, Ganesan N, Rengasamy R, Thirumurugan R, Kannan S. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus poly-saccharide fractions. Carbohydrate Polymers. 2014;107:138-150.


Hashem FA, Aboutabl EA, El-Souda SS, Selim A, Shaker K, Maamoun AA. Composition of lipoidal matter and evaluation of hepatoprotective, cytotoxic, and antioxidant activities of Khaya grandifoliola C.DC. Growing in Egypt. Egyptian Pharmaceutical Journal. 2014;13:13-20.


Manvitha K, Bidya B. Review on pharmacological activity of Cymbopogon Citratus. International Journal of Herbal Medicine. 2014;1:5-7.

Mediesse KF. Effets anti-inflammatoires des extraits et fractions polysaccharidiques des écorces de Khaya grandifoliola (Welw) C.D.C et des feuilles de Cryptolepis sanguinolenta (Lindl.) Schlechter. Thèse de Doctorat. Université de Yaoundé I. Cameroon; 2019

Mediesse KF, Boudjeko T, Hasitha A, Gangadhar M, Mbacham WF, Yogeeswari P. Inhibition of lipopolysaccharide (LPS)-induced neuroinflammatory response by polysaccharide fractions of Khaya grandifoliola (C.D.C.) stem bark, Cryptolepis sanguinolenta (Lindl.) Schltr and Cymbopogon citratus Stapf leaves in raw 264.7 macrophages and U87 glioblastoma cells. BMC Complementary and Alternative Medicine. 2018;18:86.


Zhao HP, Zhang Y, Liu Z, Chen JY, Zhang SY, Yang XD, Zhou Hl. Acute toxicity and anti-fatigue activity of polysaccharide-rich extract from corn silk. Biomedicine & Pharmacotherapy. 2017;90:686-693.


Parvathi M, Ravishankar K. Evaluation of Antidepressant, Motor Coordination and Locomotor Activities of Ethanolic Root Extract of Clitoria Ternatea. Journal of Natural Remedies. 2013;13:19–24.

Kondawar MS, Kamble KG, Khandare MM, Maharshi KH, Awale VB. Evaluation of the locomotor and diuretic activities of ethanolic extract of leaves of Capparis divaricata lam. (capparidaceae). International Journal of Pharmacy and Pharmaceutical Sciences. 2011;3:265–267.

Coura CO, de Araffljo IWF, Vanderlei ESO, Rodrigues JAG, Quinder ALG, Fontes BP, de Queiroz INL, de Menezes DB, Bezerra MM, de Silva AAR, Chaves HAV, Jorge RJB, Evangelista JSAM, Benevides NMB. Antinociceptive and Anti-Inflammatory Activities of Sulphated Polysaccharides from the Red Seaweed Gracilaria cornea. Basic & Clinical Pharmacology & Toxicology. 2012;110:335-341.


Patel PK, Sahu J, Chandel SS. A detailed review on nociceptive models for the screening of analgesic activity in experimental animals. International Journal of Neurologic Physical therapy. 2017;2:44-50.

Batista JA, Dias EGN, Brito TV, Prudêncio RS, Silva RO, Ribeiro RA, Souza MHLP, De Paula RCM, Feitosa JPA, Chaves LS, Melo MRS, Freitas ALP, Medeiros J-VR, Barbosa ALR. Polysaccharide isolated from Agardhiella ramosis-sima: Chemical structure and anti-inflammation activity. Carbohydrate Polymers. 2014;99:59-67.


Hsieh CT, Lee YJ, Dai X, Ojeda NB, Lee JH, Tien LT, Fan LW. Sys-temic Lipopolysaccharide-Induced Pain Sensitivity and Spinal Inflammation were reduced by Minocycline in Neonatal Rats. International Journal of Molecular Sciences. 2018;19:2947.


Owona BA. Etude des activités immunomodulatoires et anti-inflammatoires in vitro et in vivo de Khaya grandifoliola (Méliaceae), Entada africana (Fabaceae), et de la Baicalin : Cas de la maladie d’Alzheimer. Thèse de Doctorat. Université de Yaoundé I. Cameroun.

Elmann A, Mordechay S, Erlank H, Telerman A, Rindner M, Ofir R. An-ti-Neuroinflammatory effects of the extract of Achillea fragrantissima. BMC Complementary and Alternative Medicine. 2011;11:98.


Anonymous. Parallels between tissue repair and embryo morphogenesis: a conceptual framework. Global Health. 2006;16:4.


Sayed BA, Christy AL, Walker ME, Brown MA. Meningeal mast cells affect early T cell central nervous system infiltrationand blood-brain barrier integrity through TNF: a role for neutrophil recruitment. Journal of immunology. 2010;184:6891-6900.


Cunha JM, Cunha FQ, Poole S, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. British journal of pharmacology. 2000;130:1418-1424.