Research Progress on Auricularia delicata

Main Article Content

Li Xiao
Muharagi Samwel Jacob
Zhang Bo
Xu Anran

Abstract

Aims: To describe the current status of A. delicata emphasizing on the key parameters; occurrence, classification, molecular studies, nutritional and medicinal benefits, cultivation status, and future development perspective.

Place and Duration of Study: China–Zambia Agricultural demonstration center and Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, China between July 2019 and June 2020.

Methodology: In this study, various literatures were reviewed for each parameter studied. Findings were deduced from current literatures and discussed.

Results: The screening of bioactive contents of A. delicata revealed the presence of phenolic compounds; chlorogenic, flavonoids, and ethyl acetate, polysaccharides; Chitosan, fibers, β-glucans, mannans, chitin, and melanin. These substances exhibit hepatoprotective effects, antioxidant activities and antimicrobial activities against some microbes like Candida albicans, Bacillus subtilis, Enterococcus faecium, Streptococcus aureus, Bacillus cereus, Salmonella typhi and Escherichia coli. A. delicata also contains several nutrients namely; protein, vitamin B2, vitamin C, and minerals; Potassium, Calcium, Iron, Magnesium, Zinc, Manganese, that play a vital role in human growth and development. Moreover, its cultivation using various technologies provides an opportunity for high yield production. A. delicata was recently studied at Jilin Agricultural University and domesticated in Heilongjiang province in the northeastern part of China. Due to the similarity of its fruiting body with the structure of the deer tripe, it was assigned a common name as “Deer tripe mushroom”. A. delicata mycelia are capable of growing on several culture media with different nutritional profiles, optimal temperatures and pH values. It is cultivated under tropic temperatures ranging from 25°C-30°C, optimal pH of 6.5, and humidity 80-90%. The commonly used media include; Potato Dextrose Agar (PDA), Yeast Extract Agar (YEA) and Malt Extract Agar (MEA).

Conclusion: Therefore the above mentioned significant properties (occurrence, nutritional, medicinal, and cultivation) provide a foundation for further research on the development and utilization of A. delicata.

Keywords:
Edible mushrooms, bioactive compounds, deer tripe mushroom.

Article Details

How to Cite
Xiao, L., Jacob, M. S., Bo, Z., & Anran, X. (2020). Research Progress on Auricularia delicata. Journal of Advances in Biology & Biotechnology, 23(10), 8-32. https://doi.org/10.9734/jabb/2020/v23i1030181
Section
Review Article

References

Gargano ML, Van Griensven LJ, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP. et al. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology. 2017;(151):548–565. DOI: 10.1080/11263504.2017.1301590.

Kumar R, Tapwal A, Pandey S, Borah RK, Borah D, Borgohain J. Macro-fungal diversity and nutrient content of some edible mushrooms of Nagaland, India. Nusantara Bioscience. 2013;(5):1. DOI: 10.13057/nusbiosci/n050101.

Devi M, Singh N. Physiological studies on Auricularia delicata (Fr.) Henn. collected from Manipur. Journal of Mycopathological Research. 2008;(46):117-119.

Hyde KD, Xu J, Rapior S, Rajesh J, Saisamorn L, Allen GT, et al. The amazing potential of fungi, 50 ways we can exploit fungi industrially. Fungi Diversity. 2019; (97):1. DOI: 10.1007/s13225-019-00430-9.

Devi M, Singh N. Evaluation of proximate nutritional value of edible Auricularia delicata and A. polytricha from Manipur.Journal of Mycopathological Research. 2011;(49):199-200.

Gbolagade J, Ajayi A, Oku I, Wankasi D. Nutritive value of common wild edible mushrooms from southern Nigeria. Global Journal of Biotechnology and Biochemistry. 2006;(1):6-21.

Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X, Yang X. et al. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Diversity. 2012;(56):31-47. DOI 10.1007/s13225-012-0196-3.

Ulziijargal E, Mau JL. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. International Journal of Medicinal Mushrooms. 2011;(13):4. DOI:10.1615/IntJMedMushr.v13.i4.40.

Wangkheirakpam SD, Joshi DD, Leishangthem GD, Biswas D, Deb L. Hepatoprotective effect of Auricularia delicata (Agaricomycetes) from India in rats: Biochemical and histopathological studies and antimicrobial activity. International Journal of Medicinal Mushrooms. 2018;(20):213-225. DOI:10.1615/IntJMedMushrooms.2018025886.

Xing HW, Chao BZ, Pedro F, Changhe Z. Screening and characterization of Auricularia delicata strain for mushroomproduction under tropical temperature conditions to make use of rubberwood sawdust. Research Journal of Biotechnology. 2016;(11):11.

Kong X, Duan W, Li D, Tang X, & Duan, Z. Effects of polysaccharides from auricularia auricula on the immuno-stimulatory activity and gut microbiota in immunosuppressed mice induced by cyclophosphamide. Frontiers in Immunolog. 2020;(11):2838. DOI:10.3389/fimmu.2020.595700.

Jia D, Wang B, Li X, Peng W, Zhou J, Tan H. et al. Proteomic analysis revealed the fruiting body protein profile of Auricularia polytricha. Current Journal of Microbiology. 2017;(74):943-951. DOI: 10.1007/s00284-017-1268-0.

Varsha S, Mageshwaran V, Jagajanantha P, Khan KA. Oyster mushroom-a viable indigenous food source for rural masses. International Journal of Agricultural Engineering. 2018;(11):173-178. DOI: 10.15740/HAS/IJAE/11.Sp.

Saura CF. Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. Journal of Agricultural and Food Chemistry. 2010; (59)43-49. DOI: 10.1021/jf1036596.

Patel Y, Naraian R, Singh V. Medicinal properties of Pleurotus species (oyster mushroom): a review. World Journal of Fungal and Plant Biology. 2012;(3):1-12. DOI:10.5829/idosi.wjfpb.2012.3.1.303.

Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. International Journal of Medicinal Mushrooms. 1999;(1)1.

Qian L, Liu H, Li T, Liu Y, Zhang Z, Zhang Y. Purification, characterization and in vitro antioxidant activity of a polysaccharide AAP–3–1 from Auricularia auricula. International Journal of Biological Macromolecules. 2020;(162):1453-1464. DOI: 10.1016/j.ijbiomac.2020.07.314.

Lobo V, Patil A, Phatak A, Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews. 2010;(4):118. DOI:10.4103/0973-7847.70902.

Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Molecular Aspects of Medicine. 2005;(26):340-352. DOI:10.1016/j.mam.2005.07.006.

Wasser SP. Medicinal mushrooms in human clinical studies. part I. Anticancer, oncoimmunological, and immunomodulatory activities: A review. International Journal of Medicinal Mushrooms. 2017;(19):279-317. DOI:10.1615/IntJMedMushrooms.v19.i4.10.

Sies H. Oxidative stress: oxidants and antioxidants. Experimental Physiology: Translation and Integration. 1997;(82):291-295. DOI: 10.1113/expphysiol.1997.sp004024.

Alvarenga R, Naves L, Xavier-santos S. The Genus Auricularia Bull. ex Juss.(Basidiomycota) in Cerrado (Brazilian Savanna) areas of Goiás state and the Federal District, Brazil. Mycosphere. 2015;(6):532–541. DOI:10.5943/mycosphere/6/5/3.

Lowy B. A morphological basis for classifying the species of Auricularia. Mycologia. 1951;(43):351–358. DOI: 10.1080/00275514.1951.12024135.

Montoya AF, Hayakawa H, Minamya Y, Fukuda T, López-Quintero CA, Franco-Molano AE. et al. Phylogenetic relationships and review of the species of Auricularia (Fungi: Basidiomycetes) in Colombia. Caldasia. 2011;(33):55-66.

Prasetiya D, Aminatun T. Ecological informatics approach to analyze habitat preferences of Auricularia delicata (Italic) in Bingungan forest, Turgo natural forest conservation area[C]//Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics: University of Singapore, Singapore, January 7th -9th, Association for Computing Machinery. 2019;102-108. DOI: 10.1145/3314367.3314382.

Bandara AR, Karunarathna SC, Phillips AJ, Mortimer PE, Xu J, Kakumyan P. et al. Diversity of Auricularia (Auriculariaceae, Auriculariales) in Thailand. Phytotaxa. 2017;(292):19–34.

Looney BP, Birkebak JM, Matheny PB.Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. North American Fungi. 2013;(8)1-25. DOI: 10.2509/naf2013.008.006.

Dai YC, Yang ZL, Cui BK, Yu CJ, Yu L, Zhou LS. Species diversity and utilization of medicinal mushrooms and fungi in China. International Journal of Medicinal Mushroom. 2009;(11):287–302. DOI:10.1615/IntJMedMushr.v11.i3.80.

Wu F, Yuan Y, He SH, Bandara AR, Hyde KD, Malysheva VF, et al. Global diversity and taxonomy of the Auricularia auricula-judae complex (Auriculariales, Basidiomycota). Mycological Progress. 2015;(14):95. DOI: 10.1007/s11557-015-1113-4.

Cho SE, Kwag YN, Jo JW, Han SK, Oh SH, & Kim CS. Macrofungal diversity of urbanized areas in southern part of Korea. Journal of Asia-Pacific Biodiversity. 2020;(13):189-197. DOI: 10.1016/j.japb.2020.01.005.

De Leon A, Luangs A, Karunarathna S, Hyde KD, Reyes RG, De L. Species listing, distribution, and molecular identification of macrofungi in six Aeta tribal communities in central Luzon, Philippines. Mycosphere. 2013;(4):478-494. DOI:10.5943/mycosphere/4/3/4.

Du P, Cui BK, Zhang CF, & Dai YC. Genetic diversity of wild Auricularia auricula-judae revealed by ISSR analysis. Biochemical Systematics and Ecology. 2013;(48):199-205. DOI: 10.1016/j.bse.2012.11.011.

Bandara AR, Chen J, Karunarathna S, Hyde KD, Kakumyan P, Kakumyan P. Auricularia thailandica sp. nov.(Auriculariaceae, Auriculariales) a widely distributed species from southeastern Asia. Phytotaxa. 2015; (208):147–156. DOI:10.11646/phytotaxa.208.2.3.

Zhou LW. Systematics is crucial for the traditional Chinese medicinal studies and industry of macrofungi. Fungal Biology Reviews. 2020;(34):10-12. DOI: 10.1016/j.fbr.2019.10.002.

Kinge TR, Tabi EM, Mih AM, Enow EA, Njouonkou L, Nji TM. Ethnomycological studies of edible and medicinal mushrooms in the mount Cameroon region (Cameroon, Africa). International Journal of Medicinal Mushrooms. 2011;(13):299-305. DOI:10.1615/IntJMedMushr.v13.i3.100.

Soro B, Kone NA, Vanie-leabo LP, Konate S, Bakayoko A, Kone D. Phytogeographical and sociolinguistical patterns of the diversity, distribution, and uses of wild mushrooms in Cote d'Ivoire, West Africa. Journal of Ethnobiology ad Ethnomedicine. 2019;(15):1-5. DOI: 10.1186/s13002-019-0284-5

Looney BP, Birkebak JM, Matheny PB. Systematics of the genus Auricularia with an emphasis on species from the southeastern United States. North American Fungi. 2013;(8):1-25. DOI: 10.2509/naf2013.008.006.

Dattaraj HR, Sridhar KR, Jagadish BR. Diversity and bioprospect significance of macrofungi in the scrub jungles of southwest India. In Biodiversity and Biomedicine. Academic Press. 2020;235-246. DOI: 10.1016/B978-0-12-819541-3.00012-8.

Kavishree S, Hemavathy J, Lokesh B, Shashirekha MN, Rajarathnam S. Fat and fatty acids of Indian edible mushrooms. Food Chemistry. 2008;(106):597-602. DOI: 10.1016/j.foodchem.2007.06.018.

Boa ER. Wild edible fungi: a global overview of their use and importance to people. Rome-Italy: Food & Agriculture Organization. 2004;1-157.

Pegler DN, Piearce G. The edible mushrooms of Zambia. Kew Bulletin. 1980;475-491. DOI: 10.2307/4110017.

Degreef J, Demuynck L, Mukandera A, Nyirandayambaje G, Nzigidahera B, De Kesel A. Wild edible mushrooms, a valuable resource for food security and rural development in Burundi and Rwanda. Biotechnologie, Agronomie, Sociétéet Environnement. 2017;(20):441-452. DOI: 10.25518/1780-4507.13181.

Ian R, Steven L, Peter K, Wang Y, Anthony LJ. Edible and poisonous mushrooms of the world. Portland, Oregon: Timber Press. 2003;79-82.

Boulet B. Les champignons des arbres de i'est de i'Amérique du nord. québec: Publications du Québec. 2003;744.

Duncan GE, Macdonald JA. Microevolution in Auricularia auricula. Mycologia. 1967;(59):803–818. DOI:10.1080/00275514.1967.12018469.

Onyango BO, Mbaluto CM, Mutuku CS, Otieno DO. Molecular characterization of wood ear mushrooms [Auriculariasp.] from Kakamega Forest in Western Kenya. Current Research in Environmental & Applied Mycology. 2016;(6):51-60. DOI: 10.5943/cream/6/1/6.

Zhao Y, Wang L, Zhang D, Li R, Cheng T, Zhang Y, Liu X, Wong G, Tang Y, Wang H, Gao S. Comparative transcriptome analysis reveals relationship of three major domesticated varieties of Auricularia auricula-judae. Scientific Reports. 2019;(1)1-3. DOI:10.1038/s41598-018-36984-y.

Jia F, Yang S, Ma Y, Gong Z, Cui W, Wang Y, & Wang W. Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha. Food Bioscience. 2020; (33):100506. DOI: 10.1016/j.fbio.2019.100506.

Ma G, Yang W, Zhao L, Pei F, Fang D, & Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness. 2018;(7):125-133. DOI:10.1016/j.fshw.2018.05.002.

Reza MA, Hossain MA, Damte D, Jo WS, Hsu WH, Park SC. Hypolipidemic and hepatic steatosis preventing activities of the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes) ethanol extract in vivo and in vitro. International Journal of Medicinal Mushrooms. 2015;(17);723-734. DOI:10.1615/IntJMedMushrooms.v17.i8.30.

Guillamón E, García LA, Lozano M, Rostagno MA, Villares A, Martínez JA. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;(81):715-723. DOI: 10.1016/j.fitote.2010.06.005.

Zhang Y, Zeng Y, Men Y, Zhang J, Liu H, Sun Y. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. International Journal of Biological Macromolecules. 2018;(115):978-984. DOI: 10.1016/j.ijbiomac.2018.04.145.

Song G, Du Q. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. Journal of Chromatography A. 2010;(38):5930-5934. DOI: 10.1016/j.chroma.2010.07.036.

Jeong H, Yang BK, Jeong YT, Kim GN, Jeong YS, Kim SM, et al. Hypolipidemic effects of biopolymers extracted from culture broth, mycelia, and fruiting bodies of Auricularia auricula-judae in dietary-induced hyperlipidemic rats. Mycobiology. 2007;(35):16-20. DOI: 10.4489/MYCO.2007.35.1.016.

Xu Y, Shen M, Chen Y, Lou Y, Luo R, Chen J. et al. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. International Journal of Biological Macromolecules. 2018;(113):543-549. DOI: 10.1016/j.ijbiomac.2018.02.059

Knezevic A, Stajic M, Zivkovic L, Milovanovic I, Spremo PB, Vukojevic J. Antifungal, antioxidative, and genoprotective properties of extracts from the blushing bracket mushroom, Daedaleopsis confragosa (Agaricomycetes). International Journal of Medicinal Mushrooms. 2017;(19):509-520. DOI:10.1615/IntJMedMushrooms.v19.i6.30.

Reis FS, Martins A, Vasconcelos MH, Morales P & Ferreira IC. Functional foods based on extracts or compounds derived from mushrooms. Trends in Food Science & Technology. 2017;(66):48-62. DOI: 10.1016/j.tifs.2017.05.010.

Cilerdzic J, Stajic M, Zivkovic L, Vukojevic J, Bajic V, Spremo PB. Genoprotective capacity of alternatively cultivated Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), basidiocarps. International Journal of Medicinal Mushrooms. 2016;(18):1061-1069. DOI:10.1615/IntJMedMushrooms.v18.i12.10.

Oli AN, Edeh PA, Al-Mosawi RM, Mbachu NA, Al-Dahmoshi HO, Al-Khafaji NS, & Saki M. Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. European Journal of Integrative Medicine. 2020;(38):101176. DOI: 10.1016/j.eujim.2020.101176.

Novakovic A, Karaman M, Kaisarevic S, Radusin T, Llic N. Antioxidant and antiproliferative potential of fruiting bodies of the wild-growing king bolete mushroom, Boletus edulis (Agaricomycetes), from western Serbia. International Journal of Medicinal Mushrooms. 2017;(19):27-34. DOI:10.1615/IntJMedMushrooms.v19.i1.30.

Bach F, Zielinski AA, Helm CV, Maciel GM, Pedro AC, Stafussa AP & Haminiuk CW. Bio compounds of edible mushrooms: In vitro antioxidant and antimicrobial activities. LWT. 2019;(107):214-220. DOI: 10.1016/j.lwt.2019.03.017.

Knezevic A, Stajic M, Sofrenic I, Stanojkovic T, Milovanovic I, Tesevic V. Antioxidative, antifungal, cytotoxic and antineurodegenerative activity of selected Trametes species from Serbia. Public Library of Science One. 2018; (13):e0203064. DOI: 10.1371/journal.pone.0203064

Khatun S, Islam A, Cakilcioglu U, Chatterje NC. Research on mushroom as a potential source of nutraceuticals: a review on Indian perspective. American Journal of Experimental Agriculture. 2012;(2):47. DOI: 10.9734/AJEA/2012/492.

Nwachukwu E, Uzoeto H. Antimicrobial activity of some local mushrooms on pathogenic isolates. Medicinal Plants Research. 2010;(4):2460-2465. DOI: 10.5897/JMPR10.154.

Nguyen TL, Chen J, Hu Y, Wang D, Fan Y, Wang J, et al. In vitro antiviral activity of sulfated Auricularia auricula polysaccharides. Carbohydrate Polymers. 2012;(90):1254-1258. DOI: 10.1016/j.carbpol.2012.06.060.

Panthong S, Boonsathorn N, Chuchawankul S. Antioxidant activity, anti-proliferative activity, and amino acid profiles of ethanolic extracts of edible mushrooms. Genetic and Molecular Research. 2016;(15):4. DOI: 10.4238/gmr15048886.

Cai M, Lin Y, Luo YL, Liang HH, Sun PL. Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-judae (higher basidiomycetes). International Journal of Medicinal Mushrooms. 2015;(17):591-600. DOI:10.1615/IntJMedMushrooms.v17.i6.90.

Zhang H, Wang ZY, Yang L, Yang X, Wang X, Zhang Z. In vitro a ntioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular. International Journal of Molecular Sciences. 2011;(12):3288-3302.

Miao J, Regenstein JM, Qiu J, Zhang J, Zhang X, & Wang Z. Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-A review. International Journal of Biological Macromolecules. 2020;(150);102-113. DOI: 10.1016/j.ijbiomac.2020.02.054.

Kabuyi MK, Kapepula PM, Kabengele JK, Moni B, Makengo G, Mungitshi PM. Selenium content and antioxidant potential of some edible wild mushrooms from Bandundu area, DR Congo. Natural Resources. 2017;(8):103. DOI: 10.4236/nr.2017.82008.

Arbaayah H, Kalsom YU. Antioxidant properties in the oyster mushrooms (Pleurotus spp.) and split gill mushroom (Schizophyllum commune) ethanolic extracts. Mycosphere. 2013;(4):661-673. DOI: 10.5943/mycosphere/4/4/2.

Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Research International. 2002(3):519-526. DOI: 10.1016/S0963-9969(01)00150-8.

Kalyoncu F, Oskay M, Sağlam H, Erdoğan TF, Tamer AU. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. Medicinal Food. 2010;(13):415-419. DOI: 10.1089/jmf.2009.0090.

Heleno SA, Barros L, Martins A, Morales P, Fernández-Ruiz V, Glamoclija J & Ferreira IC. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Science and Technology. 2015;(63):799-806. DOI: 10.1016/j.lwt.2015.04.028.

Bala N, Aitken EA, Fechner N, Cusack A, Steadman KJ. Evaluation of antibacterial activity of Australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharmaceutical Biology. 201149):492-500. DOI:10.3109/13880209.2010.526616.

Adebayo E, Oloke J, Majolagbe O, Ajani RA, Bora TC. Antimicrobial and anti-inflammatory potential of polysaccharide from Pleurotus pulmonarius LAU 09. African Journal of Microbiology Research. 2012;(6):3315-3323. DOI: 10.5897/AJMR12.213.

Shameem N, Kamili AN, Ahmad M, Masoodi FA, Parray JA. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microbial Pathogenesis. 2017;(105):356-360. DOI: 10.1016/j.micpath.2017.03.005.

Shankar NG, Manavalan R, Venkappayya D, Raj CD. Hepatoprotective and antioxidant effects of Commiphora berryi (Arn) Engl bark extract against CCl4-induced oxidative damage in rats. Food and Chemical Toxicology. 2008;(46):3182-3185. DOI: 10.1016/j.fct.2008.07.010.

Soares AA, de Oliveira AL, Sá-Nakanishi AB, Comar JF, Rampazzo AP, Vicentini FA, Natali MR. Gomes da Costa SM, Bracht A, Peralta RM. Effects of an Agaricus blazei aqueous extract pretreatment on paracetamol-induced brain and liver injury in rats. BioMed Research International. 2013;(11):58-72. DOI:10.1155/2013/469180.

Abdel-Monem NM, El-Saadani MA, Daba AS, Saleh SR, Aleem E. Exopolysaccharide-peptide complex from oyster mushroom (Pleurotus ostreatus) protects against hepatotoxicity in rats. Biochemistry and Biophysics Reports. 2020;(24):100852. DOI: 10.1016/j.bbrep.2020.100852.

Duan Z, Zhang Y, Zhu C, Wu Y, Du B & Ji H. Structural characterization of phosphorylated Pleurotus ostreatus polysaccharide and its hepatoprotective effect on carbon tetrachloride-induced liver injury in mice. International Journal of Biological Macromolecules. 2020; (162):533-547. DOI: 10.1016/j.ijbiomac.2020.06.107.

Asatiani MD, Elisashvili VI, Wasser SP, Reznick AZ, Nevo E. Free-radical scavenging activity of submerged mycelium extracts from higher basidiomycetes mushrooms. Bioscience, Biotechnology, and Biochemistry. 2007; (71):3090-2. DOI: 10.1271/bbb.70280.

Gründemann C, Reinhardt JK & Lindequist U. European medicinal mushrooms: Do they have potential for modern medicine?–An update. Phytomedicine. 2020;(66):153131. DOI: 10.1016/j.phymed.2019.153131.

Fu W, Chen J, Cai Y, Lei Y, Chen L, Pei L, Zhou D, Lian X, Ruan J. Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. Journal of Ethnopharmacology. 2010;(130):521-8. DOI: 10.1016/j.jep.2010.05.039.

Moro C, Palacios I, Lozano , D’Arrigo M, Guillamón E, Villares A, Martínez JA, García-Lafuente A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chemistry. 2012;(130):350-5. DOI: 10.1016/j.foodchem.2011.03.085.

Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SM, Somasundaram R. Antioxidant activity of indigenous edible mushrooms. Journal of Agricultural and Food Chemistry. 2006;(54):9764-72. DOI: 10.1021/jf0615707.

Dinesh R. The role of antioxidants and ROS scavenging machinery in wild mushrooms. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier. 2020; (18):245-251. DOI: 10.1016/B978-0-12-821005-5.00018-1.

Takemoto K, Hatano E, Iwaisako K, Takeiri M, Noma N, Ohmae, Toriguchi K, Tanabe K, Tanaka H, Seo S, Taura K. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio. 2014;(4):777-87. DOI: 10.1016/j.fob.2014.08.007.

Wang Z, Wang C, Quan Y. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro. Carbohydrate Polymers. 2014;(99):110-115. DOI: 10.1016/j.carbpol.2013.08.073.

Watanabe A, Kobayashi M, Hayashi S, Kodama D, Isoda K, Kondoh M, Kawase M, Tamesada M, Yagi K. Protection against D-galactosamine-induced acute liver injury by oral administration of extracts from Lentinus edodes mycelia. Biological and Pharmaceutical Bulletin. 2006;(29):1651-4. DOI: 10.1248/bpb.29.1651.

Zhao H, Li H, Lai Q, Yang Q, Dong Y, Liu X, Wenshuai W, Jianjun Z, Jia L. Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury. International journal of biological macromolecules. 2029;(127):476-485. DOI:10.1016/j.ijbiomac.2019.01.067.

Zhao S, Zhang S, Zhang W, Gao Y, Rong C, Wang H, Liu Y, Wong JH. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Scientific Reports. 2019;(9):1-3. DOI: s41598-019-49925-0.

Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complementary and Alternative Medicine; 2012. DOI: 10.1155/2012/464238.

Maseko T, Howell K, Dunshea FR & Ng K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food chemistry. 2014;(146):327-333. DOI: 10.1016/j.foodchem.2013.09.074.

İnal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clinica Chimica Acta. 2001;(305):75-80. DOI: 10.1016/S0009-8981(00)00422-8.

Sumy AK, Jahan N, Sultana N. Study on the hepatoprotective effect of oyster mushroom (Pleurotus florida) against paracetamol induced liver damage in Wistar Albino rats. Journal of Bangladesh Society of Physiologist. 2010;(5):46-52. DOI: 10.3329/jbsp.v5i2.6776.

Lin ZB, Wang MY, Liu Q, Che QM. Effects of total triterpenoids extract from Ganoderma Iucidum (Curt.: Fr.) P. Karst.(Reishi Mushroom) on experimental liver injury models induced by carbon tetrachloride or D-galactosamine in mice. International Journal of Medicinal Mushrooms. 2002;(4):4. DOI: 10.1615/IntJMedMushr.v4.i4.70.

Lindequist U, Niedermeyer TH, Jülich W.D. The pharmacological potential of mushrooms. Evidence-based Complementary andAlternative Medicine. 2005;(2):285-299. DOI: 10.1093/ecam/neh107.

Chang YY, Lin YL, Yang DJ, Liu CW, Hsu CL, Tzang BS, Chen YC. Hepatoprotection of noni juice against chronic alcohol consumption: lipid homeostasis, antioxidation, alcohol clearance, and anti-inflammation. Journal of Agricultural and Food Chemistry. 2013;(61):11016-24. DOI: 10.1021/jf4038419.

Nitha B, Fijesh P, Janardhanan K, et al. Hepatoprotective activity of cultured mycelium of morel mushroom, Morchella esculenta. Experimental and Toxicologic Pathology. 2013;(65):105-112. DOI: 10.1016/j.etp.2011.06.007.

Ren Z, Li J, Xu N, Zhang J, Song X, Wang X, Gao Z, Jing H, Li S, Zhang C, Liu M. Anti-hyperlipidemic and antioxidant effects of alkali-extractable mycelia polysaccharides by Pleurotus eryngii var. tuolensis. Carbohydrate Polymers. 2017;(175):282-92. DOI: 10.1016/j.carbpol.2017.08.009.

Wang X, Lan Y, Zhu Y, Li S, Liu M, Song X, Zhao H, Liu W, Zhang J, Wang S, Jia L. Hepatoprotective effects of Auricularia cornea var. Li. polysaccharides against the alcoholic liver diseases through different metabolic pathways. Scientific Reports. 2018;(8):1-12. DOI: s41598-018-25830-w.

Jayakumar T, Sakthivel M, Thomas PA, Geraldine P. Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. Chemico-Biological Interactions. 2008;(176):108-20. DOI: 10.1016/j.cbi.2008.08.006.

Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Molecular Aspects of Medicine. 2008;(29):9-16. DOI: 10.1016/j.mam.2007.09.004.

Al-dbass AM, Al-daihan SK, Bhat R. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats. Saudi Journal of Biological Sciences. 2012; (19):303-309. DOI: 10.1016/j.sjbs.2012.03.004.

Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck’s Archives of Surgery. 2006; (391):499-510. DOI: 10.1007/s00423-006-0073-1.

Cheng JJ, Chao CH, Chang PC, Lu MK. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids. 2016;(53):37-45. DOI: 10.1016/j.foodhyd.2014.09.035.

Ferreira IC, Barros L, Abreu RM. Antioxidants in wild mushrooms. Current Medicinal Chemistry. 2009;(16):1543-1560. DOI: 10.2174/092986709787909587.

Mau JL,, Chang CN, Huang SJ, Chen CC. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chemistry. 2004;(87): 111-18. DOI: 10.1016/j.foodchem.2003.10.026.

Neuman MG, Cohen L, Zakhari S, Nanau RM, Mueller S, Schneider M, Parry C, Isip R, Seitz HK. Alcoholic liver disease: a synopsis of the Charles Lieber's Memorial Symposia 2009–2012. Alcohol and alcoholism. 2014;(49):373-80. DOI: 10.1093/alcalc/agu021.

Vitaglione P, Morisco F, Caporaso N, Fogliano V. Dietary antioxidant compounds and liver health. Critical reviews in Food Science and Nutrition. 2005;(44):575-86. DOI:10.1080/10408690490911701.

Jayakumar T, Thomas PA, Geraldine P. Protective effect of an extract of the oyster mushroom, Pleurotus ostreatus, on antioxidants of major organs of aged rats. Experimental gerontology. 2007;(42):183-191. DOI: 10.1016/j.exger.2006.10.006.

Rai M, Sen S, Acharya K. Antimicrobial activity of four wild edible mushrooms from Darjeeling hills, West Bengal, India. International Journal of PharmTech Research. 2013;(5):949-956.

Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences. 2015;(16):26087-124. DOI: 10.3390/ijms161125942.

Wong JY, Chye FY. Antioxidant properties of selected tropical wild edible mushrooms. Journal of Food Composition and Analysis. 2009;(22):269-277. DOI: 10.1016/j.jfca.2008.11.021.

Aruoma O. Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology.1994;(32):671-683. DOI:10.1016/0278-6915(94)90011-6.

Zhu B, Li Y, Hu T, Zhang Y. The hepatoprotective effect of polysaccharides from Pleurotus ostreatus on carbon tetrachloride-induced acute liver injury rats. International Journal of Biological Macromolecules. 2019;(131)1-9. DOI: 10.1016/j.ijbiomac.2019.03.043.

Jana T, Tzveta S, Zlatina N, Natasha I, Dimitrinka A, Milena A, Katerina G. Effect of endurance training on diurnal rhythms of superoxide dismutase activity, glutathione and lipid peroxidation in plasma of pinealectomized rats. Neuroscience Letters. 2020;(716):1346-37. DOI: 10.1016/j.neulet.2019.134637.

Mroueh M, Saab Y, Rizkallah R. Hepatoprotective activity of Centaurium erythraea on acetaminophen‐induced hepatotoxicity in rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2004;(18):431-433. DOI: 10.1002/ptr.1498.

Jayakumar T, Huang HC, Hsia CW, Fong TH, Khamrang T, Velusamy M, Hsia CH. et al. Ruthenium derivatives attenuate LPS-induced inflammatory responses and liver injury via suppressing NF-κB signaling and free radical production. Bioorganic Chemistry. 2020;(96):103639. DOI: 10.1016/j.bioorg.2020.103639.

Xu S, Zhang Y, Jiang K. Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food and Function. 2016;7(9):3868-3879. DOI: 10.1039/C6FO00686H.

Wu J, Li P, Tao D, Zhao H, Sun R, Ma F, Zhang B. Effect of solution plasma process with hydrogen peroxide on the degradation and antioxidant activity of polysaccharide from Auricularia auricula. International Journal of Biological Macromolecules. 2018;(117):1299-304. DOI: 10.1016/j.ijbiomac.2018.05.191.

Ma H, Xu X, Feng L. Responses of antioxidant defenses and membrane damage to drought stress in fruit bodies of Auricularia auricula-judae. World Journal of Microbiology and Biotechnology. 2014;(30):119-124. DOI: 10.1007/s11274-013-1416-z.

Chen Y, Xue Y. Purification, chemical characterization and antioxidant activities of a novel polysaccharide from Auricularia polytricha. International Journal of Biological Macromolecules. 2018;(120):1087-1092. DOI: 10.1016/j.ijbiomac.2018.08.160.

Khaskheli SG, Zheng W, Sheikh SA, Khaskheli AA, Liu Y, Soomro AH, Feng X, Sauer MB, Wang YF, Huang W. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. International Journal of Biological Macromolecules. 2015;(81):387-95. DOI: 10.1016/j.ijbiomac.2015.08.020.

Kho YS, Vikineswary S, Abdullah N, Kuppusamy UR, Oh HI. Antioxidant capacity of fresh and processed fruit bodies and mycelium of Auricularia auricula-judae (Fr.) Quél. Journal of Medicinal Food. 2009;(12):167-74. DOI: 10.1089/jmf.2007.0568.

Najmi AK, Pillai KK, Pal SN, Aqil M. Free radical scavenging and hepatoprotective activity of jigrine against galactosamine induced hepatopathy in rats. Journal of Ethnopharmacology. 2005;(97):521-5. DOI: 10.1016/j.jep.2004.12.016.

Gezer K, Duru ME, Kivrak I, Turkoglu A, Mercan N, Turkoglu H, Gulcan S. Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom from Turkey. African Journal of Biotechnology. 2006;(5):20.

Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, Mohtarrudin N, Tohid SF, Zakaria ZA. Amelioration of paracetamol-induced hepatotoxicity in rat by the administration of methanol extract of Muntingia calabura L. leaves. BioMed Research International. 2014;(20):14. DOI: 10.1155/2014/695678.

Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H. Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture. 2015;(446):25-9. DOI: 10.1016/j.aquaculture.2015.04.021.

Ji L, Jiang P, Lu B, Sheng Y, Wang X, Wang Z. Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism. The Journal of Nutritional Biochemistry. 2013;(24):1911-9. DOI: 10.1016/j.jnutbio.2013.05.007.

Pang C, Sheng YC, Jiang P, Wei H, Ji LL. Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals. Journal of Zhejiang University-Science B. 2015;(16):602-10. DOI: 10.1631/jzus.B1400346.

Zheng Z, Sheng Y, Lu B, Ji L. The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation. Chemico-biological Interactions. 2015;(238):93-101. DOI: 10.1016/j.cbi.2015.05.023.

Wu D, Bao C, Li L, Fu M, Wang D, Xie J, Gong X. Chlorogenic acid protects against cholestatic liver injury in rats. Journal of Pharmacological Sciences. 2015;(129):177-82. DOI: 10.1016/j.jep.2014.11.044.

Mau JL, Chao GR, Wu KT. Antioxidant properties of methanolic extracts from several ear mushrooms. Agricultural and Food Chemistry. 2001;(49):5461-5467. DOI: 10.1021/jf010637h.

Reis FS, Martins A, Barros L, Ferreira IC. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology. 2012;(50):1201-7. DOI: 10.1016/j.fct.2012.02.013.

Wu Q, Tan Z, Liu H, Gao L, Wu S, Luo J, Zhang W, Zhao T, Yu J, Xu X. Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. International Journal of Biological Macromolecules. 2010;(46):284-8. DOI: 10.1016/j.ijbiomac.2010.01.016.

Lin WC, Lin WL. Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats.World Journal of Gastroenterology. 2006;(12):265. DOI:10.3748%2Fwjg.v12.i2.265

Shin CK, Yee CF, Shya LJ, Atong M. Nutritional properties of some edible wild mushrooms in Sabah. Journal of Applied Science. 2007;(7):2216-21. DOI: 10.3923/jas.2007.2216.2221.

Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology. 2013;(97):477-501. DOI: 10.1007/s00253-012-4552-8.

Gong Y, Huang Y, Gao L, Lu J, Hu Y, Xia L, Huang H. Nutritional composition of caviar from three commercially farmed sturgeon species in China. Journal of Food and Nutrition Research. 2013;(5):108-12. DOI:10.12691/jfnr-1-5-5.

Kalač PJ. Trace element contents in European species of wild growing edible mushrooms: a review for the period. Food Chemistry. 2010;(122)2-15. DOI: 10.1016/j.foodchem.2010.02.045.

Hoa HT, Wang CL, Wang CH. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology. 2015;(43):423–434. DOI:10.5941/MYCO.2015.43.4.423.

Wu Z, Zhang M, Yang H, Zhou H & Yang H. Production, physico-chemical characterization and antioxidant activity of natural melanin from submerged cultures of the mushroom Auricularia auricula. Food bioscience. 2018;(26):49-56. DOI: 10.1016/j.fbio.2018.09.008.

Haro A, Trescastro A, Lara L, Fernández-Fígares I, Nieto R, & Seiquer I. Mineral elements contents of wild growing edible mushrooms from the southeast of Spain. Journal of Food Composition and Analysis. 2020;(103):504. DOI: 10.1016/j.jfca.2020.103504.

Anna S. Medicinal mushrooms: Textbook of Natural Medicine. 5th edition, Churchhill Livingstone. 2020;679-692.e6, ISBN 9780323523424; DOI: 10.1016/B978-0-323-43044-9.00090-X.

Hassan MH, Asad B, Jäger AK, Hussain IZ. Screening and comparison of two edible macrofungi of Auricularia spp. Mycological Progress. 2017;112:460.

Gbolagade JS, Fasidi IO. Antimicrobial activities of some selected Nigerian mushrooms. African Journal of Biomedical Research. 2005;(8):83-87. DOI:10.4314/ajbr.v8i2.35766.

Sanmee R, Dell B, Lumyong P, Izumori K, Lumyong S. Nutritive value of popular wild edible mushrooms from northern Thailand. Food chemistry. 2003;82(4):527-32. DOI: 10.1016/S0308-8146(02)00595-2.

Rasalanavho M, Moodley R, & Jonnalagadda SB. Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chemistry. 2020;(12):65-96. DOI: 10.1016/j.foodchem.2020.126596.

Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances. 2009;(27):185-194. DOI: 10.1016/j.biotechadv.2008.11.001.

Girmay Z, Gorems W, Birhanu G, Zewdie S. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. Amb Express. 2016;(60):87. DOI: 10.1186/s13568-016-0265-1.

Kakon A, Choudhury MB, Saha S. Mushroom is an ideal food supplement. Journal of Dhaka National Medical College & Hospital. 2012;(18):58-62. DOI: 10.3329/jdnmch.v18i1.12243.

Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC. Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi Journal of Biological Sciences. 2019;(26):263-9. DOI: 10.1016/j.sjbs.2016.10.017.

Kadnikova IA, Costa R, Kalenik TK, Guruleva ON, Yanguo S. Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. Journal of Food and Nutrition Research. 2015;(3):478-82. DOI:10.12691/jfnr-3-8-1.

Cheung PC. Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Science and Human Wellness. 2013;(2):162-166. DOI: 10.1016/j.fshw.2013.08.001.

Wong KH, Katsumata SI, Masuyama R, Uehara M, Suzuki K, Cheung PC. Dietary fibers from mushroom sclerotia. 4. In vivo mineral absorption using ovariectomized rat model. Journal of Agricultural and Food Chemistry. 2006;(54):1921-7. DOI: 10.1021/jf052619w.

Kalač PJ. A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of Science of Food and Agriculture. 2013;(93):209-218. DOI: 10.1002/jsfa.5960.

Fang QH, Zhong J. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochemical Engineering Journal. 2002;10(1):61-65. DOI: 10.1016/S1369-703X(01)00158-9.

Vieira GR, Liebl M, Tavares LB, Paulert R, Smânia JA. Submerged culture conditions for the production of mycelial biomass and antimicrobial metabolites by Polyporus tricholoma Mont. Brazilian Journal of Microbiology. 2008;39(3):561-8. DOI: 10.1590/S1517-83822008000300029.

Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology. 2004;35(5):369-76. DOI: 10.1016/j.enzmictec.2003.12.015.

Mshandete AM. Cultivation of Pleurotus HK-37 and Pleurotus sapidus (oyster mushrooms) on cattail weed (Typha domingesis) substrate in Tanzania. International Journal of Research in Biological Sciences. 2011;(3):135-144.

Sánchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology. 2010;85(5):1321-1337. DOI: 10.1007/s00253-009-2343-7.

Kivaisi, AK. Mushroom cultivation in Tanzania–a new industry. Opera Mycologia. 2007;(1):12-22.

Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Lumyong S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules. 2020;25:2811.

DOI: 10.3390/molecules25122811.

Chang ST, Hayes WA. The biology and cultivation of edible mushrooms. New York: Academic Press. 1978;573–603.

Pérez-Chávez AM, Mayer L, Albertó E. Mushroom cultivation and biogas production: A sustainable reuse of organic resources. Energy for Sustainable Development. 2019;(50):50-60. DOI: 10.1016/j.esd.2019.03.002.

Samuel AA, Eugene TL. Growth performance and yield of oyster mushroom (Pleurotus ostreatus) on different substrates composition in Buea South West Cameroon. Science Journal of Biochemistry, 2012. DOI: 10.7237/sjbch/139.

Shah Z, Ashraf M, Ishtiaq M. Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (wheat straw, leaves, saw dust). Pakistan Journal of Nutrition. 2004;(3):158-160. DOI:10.3923/PJN.2004.158.160.

Quimio T. Cultivation ganoderma the “Pleurotus-way” mushroom. Newsletter for Tropics. 1976;6(13):121-130.

Zhong JJ, Tang YJ. Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. In Biomanufacturing.Springer. 2004;25-59. DOI: 10.1007/b94367

Fazenda ML, Seviour R, McNeil B, Harvey LM. Submerged culture fermentation of “higher fungi”: the macrofungi. Advances in applied microbiology. 2008;(63):33-103. DOI: 10.1016/S0065-2164(07)00002-0.

Yang FC, Liau CB. Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Engineering. 1998;(3):233-236. DOI: 10.1007/PL00009014.