Journal of Advances in Biology & Biotechnology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2021 - Volume 24 [Issue 3]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

The Phytochemical Constituents, Hypoglycemic, and Antioxidant Activities of Senna occidentalis (L.) Ethanolic Leaf Extract in High Sucrose Diet Fed Drosophila melanogaster

  • Okoye Clifford Tochukwu
  • Ogbonna Abigail
  • Etuh Monday Alexander
  • Sani Peter Ugbedeojo

Journal of Advances in Biology & Biotechnology, Page 48-63
DOI: 10.9734/jabb/2021/v24i330206
Published: 17 May 2021

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Aim: This study was aimed at evaluating the phytochemical constituents,hypoglycemic, and antioxidant activities of Senna occidentalis ethanolic leaf extract in diabetic Drosophila melanogaster with emphasis on survival, phytochemical, biochemical and fecundity assays as well as locomotor activities.


Methodology:S. occidentalisleaves was collected and prepared for extraction using 70% ethanol as solvent. The extract was subjected to phytochemical screening and the lethal dose(LD50) was carried out on D. melanogasterfor 7 days. Survival study was conducted by treating fruit flies with different concentration of the extracts for 28 days. Hyperglycemia was induced by feeding the flies with food containing 30% of sucrose for 10 days, and thereafter treated with different concentration of the extract and metformin (positive control) for 7 days.Diabetic flies were used for the negative geotaxis and fecundity assays. The homogenates of flies from the different groups of the treatment and control were prepared and used to quantify the glucose content and the antioxidant activities which included the thiol content, glutathione-s-transferase and catalase activities.


Results: The phytochemical screening revealed the presence 8 different phytochemicals. The LD50 was determined to be 277.8 mg/10 g fly food of S. occidentalis. Supplementation with S. occidentalis ethanolic extracts showed a non-significant increase (P> 0.05) in the survival of D melanogaster when compared to the baseline group.Diabetic flies treated withthe extract showed a dose-dependent decrease in serum glucose which was significant (P< 0.05) at 100 mg when compared to the negative control group(untreated). Negative geotaxis, fecundity and catalase activitiesof treated fliesshowed no significant difference (P> 0.05) when compared toflies in the negative control group. S. occidentalis ethanolic leaf extract significantly elevated (P< 0.05) the total thiol content and glutathione-s-transferase activities at certain concentration in a non-linear manner.


Conclusion: From the findings, S. occidentalis ethanolic leaf extract contained several phytochemicals and it is relatively safe; possessing hypoglycemic and antioxidant properties when administered to diabeticD. melanogaster.


Keywords:
  • Diabetes
  • drosophila melanogaster
  • senna occidentalis
  • antioxidant
  • and hypoglycemic
  • Full Article – PDF
  • Review History

How to Cite

Tochukwu, O. C., Abigail, O., Alexander, E. M., & Ugbedeojo, S. P. (2021). The Phytochemical Constituents, Hypoglycemic, and Antioxidant Activities of Senna occidentalis (L.) Ethanolic Leaf Extract in High Sucrose Diet Fed Drosophila melanogaster. Journal of Advances in Biology & Biotechnology, 24(3), 48-63. https://doi.org/10.9734/jabb/2021/v24i330206
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. African journal of traditional, complementary, and alternative medicines. 2013;10(5):210-229.
DOI: 10.4314/ajtcam.v10i5.2

Walter ML, 0male S, David BG, Gyang SS, Alemika ET. Moringa oleifera Leaf extract promotes antioxidant, survival, fecundity, and locomotor activities in Drosophila melanogaster. European Journal of Medicinal Plants. 2020;31(15):30-42.

Arora DS, Kaur GJ. Antibacterial activity of some Indian medicinal plants. Journal of Natural Medicine. 2007;61:313-317.
DOI: 10.1007/s11418-007-0137-8

Gidado NM, Tanko Y, Sada NH, Mohammed A. The effects of S. occidentalis leaf supplement on blood glucose level, liver enzymes and total protein n alloxan-induced diabetic wistar rats. Bayero journal of Pure and Applied sciences. 2016;9(10):68-75.

Arya V, Yadav S, Kumar S, Yadav JP. Antimicrobial activity of Cassia occidentalisL. (leaf) against various human pathogenic microbes. Life Sciences and Medicinal Research. 2010;9:1-11.

Romero-Frias X. The Maldive Islanders, a study of the popular culture of an ancient Ocean Kingdom. 3rded. Nova EthnographiaIndica;2003.

Onakpa MM, Ajagbonna OP. Antidiabetic potentials of Cassia occidentalis leaf extract on alloxan induced diabetic albino mice. International Journal of PharmTech Research. 2012;4(4):1766-1769.

Arya V, Yadav JP. Antioxidant properties of the methanol extracts of the leaves, seeds and stem ofCassia occidentalis. Research Journal of Medicinal Plants. 2011;5(5):547-556.
DOI: 10.3923/rjmp.2011.547.556

Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World journal of diabetes. 2015;6(6):850-867.
DOI: 10.4239/wjd.v6.i6.850

Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World Journal of Diabetes. 2016;7(17):412–22.
DOI: 10.4239/wjd.v7.i17.412
PMID 27660698.

Labu ZK, Jahan K, Rahman F. Current official status of traditional medicine and their used as in chronic diseases. Bangladesh. Journal of Drug Discovery and Therapeutics. 2013;1(3):93-104.

Verma L, Khatri A, Kaushik B, Patil UK, Pawar RS. Antidiabetic activity of Cassia occidentalislinn. in normal and alloxan-induced diabetic rats. Indian Journal of Pharmacology. 2011;42:224-228.

Francisca VA, Gustavo FS, Giulianna EM, Katiane RM, Illana KM, Ana PT, et al. Phytochemical constituents and toxicity of Duguetiafurfuraceahydroalcoholic extract in Drosophila melanogaster. Evidence-Based Complementary and Alternative Medicine; 2014.
Article ID 838101.
DOI: 10.1155/2014/838101

Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clinical Chemistry. 2006;52(4):601-623.
DOI: 10.1373/clinchem.2005.061408

Murthy GP, Leelaja BC, Ravishankar HG, Dharshan CG, Rajesh K. Evaluation of neuroprotection and antioxidant activities via drosophila model system in the active principle derived fromSidaGlutinosa Comm. Ex Cav. - An Aboriginal Ethno-Medicinal Plant Drug Practiced in the Folklore Medicinal System. Biomedical Journal of Scientific and Technical Research. 2009;11(5):1568-1574.

Rajendiran D, Gunasekaran K, Packirisamy S. A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(2):48-53.
DOI: 10.22159/ajpcr.2018.v11i2.23241

Bajaj S, Khan A. Antioxidants and diabetes. Indian journal of endocrinology and metabolism.2012;16(8):267-271.
DOI:10.4103/2230-8210.104057

Abolaji AO, Kamdem J, Farombi E, Rocha JBT. Drosophila melanogaster as a promising model organism in toxicological studies. Archives of Basic and Applied Medicine. 2013;1:33-38.

Niveditha S, Shivanandappa T, Ramesh S. Ameliorative potential of natural antioxidants against paraquat-induced oxidative stress and locomotor impairment in Drosophilamelanogaster: A comparative study. Open Bioactive Compounds Journal. 2017;05(1):43-56.
DOI: 10.2174/18748473017050100431

Baenas N, Wagner AE. Drosophila melanogaster as an alternative model organism in nutrigenomics. Genes and Nutrition. 2019;14:14.
DOI: 10.1186/s12263-019-0641-y

Atli E, Ünlu H. Developmental and reproductive effects of bisphenol A (Bpa) in Drosophila melanogaster. Journal of Biology and Chemistry. 2012;40(1):61-68.

Nouhaud P, Mallard F, Poupardin R, Barghi N, Schlötterer C. High-throughput fecundity measurements in Drosophila. Scientific Reports. 2018;8(1):1–6.

Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348(6240).
DOI: 10.1126/science.aaa2478

Jéssica P, Rocío S, Juan R. Drosophila melanogaster as a model for diabetes type 2 progression. BioMed Research International; 2018.
DOI: 10.1155/2018/1417528. PMID: 29854726.

Etuh MA, Ohemu LT, Pam DD. Lantana camara ethanolic leaves extracts exhibit anti-aging properties in Drosophila melanogaster: Survival-rate and life span studies, Toxicology Research. 2021;10(1):79-83.
DOI: 10.1093/tores/tfaa098
PMID: 33613975.

Sofowara A. Medicinal plants and traditional medicine in Africa. 2nd ed. Spectrum Books Ltd. Ibadan. 1993;191-289.

Mohammad F, Singh P. A drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs. BMC Systems Biology. 2009;3(11):3-17.
DOI: 10.1186/1752-0509-3-11

Abolaji AO, Kamdem JP, Lugokenski TH, Nascimento TK, Waczuk EP, Farombi EO, et al. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radical Biology and Medicine. 2014;71:99-108.
DOI: 10.1016/j.freeradbiomed.2014.03.014

Tennessen JM, Barry W, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods. 2014;68(1):105-115.
DOI: 10.1016/j.ymeth.2014.02.034
PMID:24631891.

Coogan CM. Diagnosis and prevention of metabolic diseases in Drosophila melanogaster. Engaged Learning Collection. 2013;27.
Accessed 01 April 2021.
Available: https://scholar.smu.edu/upjournal_research/27

Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Annals of Internal Medicine. 2016;164(11):740–751.
DOI: 10.7326/M15-2650
PMID 27088241.

Omale S, Aguiyi JC, Adekunle OG, Johnson TO, Ochala SO, Etuh MA, Eze MC. Evaluation of the antidiabetic effects of the stem bark extract of Parinaricuratellifolia (Planch.exBenth.) in Drosophila melanogaster. Journal of Pharmacology and Toxicology. 2021;16(1):9-21.

Bergland AO, Chae HS, Kim YJ, Tatar M. Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aquaporin. PLOS Genetics. 2012;8(4).
DOI: 10.1371/journal.pgen.1002631

Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82:70-77.

Habig WH, Jakoby WB. Glutathione-S-transferases (rat and humaqn). Methods in Enzymology. 1981;77:218-231.

Aebi H. Catalase in vitro, Methods in Enzymology. 1984;105:121-126.

Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, DaSilva LEL, Rocha JB. Ovotoxicants 4-vinylclohexane 1,2-monoepoxide and 4-vinylclohexane diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biology. 2015;5:328-339.

OrjiOU, Ibam UA, Aja PM, Ugwu P, UrakuA, Aloke C, Nwali B. Evalutaion of phytochemical and nutritional profiles of Cnodosculusaconitifolius leaf collected in Abakliki South East Nigeria. World Journal of Medical Sciences.2016;13(3):213-217.

Odeja OO, Obi G, Ogwuche CE, Elemike EE, Oderinlo OO. Phytochemical screening, antioxidant and antimicrobial activities of Senna occidentalis(L) leaves. International Journal of Herbal Medicine.2014;2(4):26-30.

Tiong SH, LooiCY, Hazni H, Arya A,Paydar M, Wong WF, et al. Antidiabetic and antioxidant properties of alkaloids from Catharantusroseus (L) G. Don. Molecules.2013;18(8):9770-9784.

Trease GE, Evans WC. Pharmacognosy. 16th ed. Saunders Ltd; 2009.

Isah RT, Mohammed MO, Muhammad AT, Sahabi SM, Umar ZU, Mahmud RI, et al. Effects of aqueous leaf extracts of Senna occidedantalis on rat kidney. African Journal of Biomedical Research. 2018;21:225-230.

Mirtes GB, Ticiana PA, Carlos FB, Pablo AF, Bruno AA, Igor MA, et al. Acute and subacute toxicity of Cassia occidentalis L. stem and leaf in Wistar rats. Journal of Ethnopharnacology. 2011;136(2):341-346.

Adedara IA, Abolaji AO, Rocha JBT, Farombi EO. Diphenyldiselenide protects against mortality, locomotor deficits and oxidative stress in Drosophilamelanogaster model of manganeseinduced neurotoxicity. Neurochemical Research.2016;41(6):1430-1438.
DOI: 10.1007/s11064-016-1852-x

Perkins AT, Das TM, Panzera LC, Bickel SE. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors, Proceedings of the National Academy of Sciences of the United States of America. 2016;113(44):E6823-E6830.
DOI: 10:1017/pnas.1612047113
PMID:27791141.

Haghnazari L, Vaisi-Raygani A, Keshvarzi F, Ferdowsin F, Goodarzi M, Rahimi Z, et al. Effect of acetylcholinestreraseand butyrylcholinesteraseon intrauterine insemination, contribution on inflammations, oxidative stress and antioxidant status; A Preliminary Report. Journal of reproduction and infertility. 2016;17(3):157-162.

Chukwunonso OB, Chinwuba OT, Okpashi VE, Nonye IC, Olisah AE. Comparative study of the antioxidant effects of metformin, glibenclamide, and repaglinide in alloxan-induced diabetic rats. Journal of diabetes research. 2016;6:1-5.
DOI: 10.1155/2016/1635361
PMID:26824037.

Tsado N, Lawal B, Kontagora G, Muhammad M, Yahaya M, Gboke J, et al. Antioxidants and antimicrobial- activities of methanol leaf extract of senna occidentalis. Journal of Advances in Medical and Pharmaceutical Sciences. 2016;8:1-7.
DOI: 10.9734/JAMPS/2016/25655

Jones DP, Carlson JL, Mody VC, Cai J, Lynn, MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radical Biological and Medicine. 2000;28(4):625-635.
DOI: 10.1016/s0891-5849(99)00275-0

Lapshina EA, Sudnikovich EJ, Maksimchik JZ, Zabrodskaya SV, Zadvonik LB, Kubyshin VL, et al. Antioxidative enzyme and glutathione S- transferase activities in diabetic rats exposed to long-term ASA treatment. Life Sciences. 2006;79(19):1804-1811.
DOI: 10.1016/j.lfs.2006.06.008
PMID: 16815474.

Ghazali R, Waring H. Effect of flavonoids on glutathione-s-transferase in human blood platelets, rat liver, rat kidney and HT-29 colon adenocarcinoma cell-lines: Potential in drug metabolism and chemoprevention. Medical Science Research. 1999;27:449-451.

Abolaji AO, OlaiyaCO, Oluwagbenga JO, Ebenezer OF. Dietary consumption of monosodium l-glutamate induces adaptive response and reduction in the life span of Drosophila melanogaster. Cell Biochemistry and Function. 2017;35:164-170.
  • Abstract View: 811 times
    PDF Download: 290 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Advances in Biology & Biotechnology. All rights reserved.