Enzymatic Activities of Halotolerant and Halophilic Fungi Isolated from Iko River Estuary, South-South Nigeria
Journal of Advances in Biology & Biotechnology, Volume 25, Issue 8,
Page 12-27
DOI:
10.9734/jabb/2022/v25i8590
Abstract
Aim: Fungi that can tolerate unfavorable conditions are a potential source of stable bioactive metabolites that can be used for various industrial processes. Therefore this study aimed to isolate halotolerant and halophilic fungi from the Iko river estuary and screen them for three industrially important enzymes: amylase, cellulase, and mannanase.
Place and Duration of Study: Department of Microbiology, Akwa Ibom State University, Nigeria, between September 2021 and August 2022.
Methodology: Five sediment-dwelling fungi isolated from three locations along the Iko river estuary were assayed for their halotolerance on PDA containing different NaCl concentrations while their amylolytic, cellulolytic, and mannolytic activities were evaluated on agar plates containing 10% NaCl. The highest producer of the screened enzymes was identified using molecular techniques and further subjected to various submerged fermentation conditions to optimize the production of salt tolerant amylase, cellulase, and mannanase.
Results: All isolates were halotolerant, best adapted to a salinity of 5% NaCl (w/v), and capable of secreting at least one of the three tested enzymes in 10% NaCl (w/v). Aspergillus niger isolate L2S1 had the highest enzymatic index among other isolates thus requiring optimization. The optimum production of amylase, cellulase, and mannanase was obtained at an incubation temperature of 30oC, initial pH of 6.0, and NaCl concentration of 5% (w/v). Out of the tested agro-wastes, wheat bran was most suited for the production of amylase, corncob was optimum for cellulase production, and maximum mannanase yield was obtained using copra meal. Amylase and cellulase production was optimal at 96 hours of incubation, whereas mannanase required 144 hours of fermentation to reach its maximum activity.
Conclusion: Aspergillus niger isolate L2S1 was capable of utilizing different carbon sources including cheap agro-residues as substrates for the production of halostable amylase, cellulase, and mannanase.
- Estuary
- sediments
- fungi
- Aspergillus
- penicillium
- enzymes
How to Cite
References
Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK. Halophiles – Taxonomy, Diversity, Physiology and Applications. In Microorganisms in Environmental Management. Springer. 2011;1–34.
DOI:10.1007/978-94-007-2229-3_1
Edbeib MF, Wahab RA, Huyop F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology and Biotechnology. 2016; 32(8):1-23.
DOI:10.1007/s11274-016-2081-9
Obeidat M. Isolation and characterization of extremely halotolerant Bacillus species from Dead Sea black mud and determination of their antimicrobial and hydrolytic activities. African Journal of Microbiology Research. 2017;11(32):1303-1314.
DOI:10.5897/AJMR2017.8608
Alcérreca-Huerta JC, Callejas-Jiménez ME, Carrillo L, Castillo MM. Dam implications on salt-water intrusion and land use within a tropical estuarine environment of the Gulf of Mexico. Science of The Total Environment. 2019;652:1102-1112.
DOI:10.1016/j.scitotenv.2018.10.288
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS microbiology reviews. 2018;42(3):353-375.
DOI:10.1093/femsre/fuy009
Ali I, Khaliq S, Sajid S, Akbar A. Biotechnological Applications of Halophilic Fungi: Past, Present, and Future. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. 2019;291–306.
DOI:10.1007/978-3-030-19030-9_15
Corral P, Amoozegar MA, Ventosa A. Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine drugs. 2019;18(1):33.
DOI: 10.3390/md18010033.
Patankar RS, Zambare VP, Ponraj M. Physiological aspects of the halophilic and halotolerant fungi, and their potential applications. Novel Research in Microbiology Journal. 2021;5(5):1371-91.
DOI:10.21608/NRMJ.2021.199315
Śliżewska W, Struszczyk-Świta K, Marchut-Mikołajczyk O. Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. International Journal of Molecular Sciences. 2022;23(8):4189.
DOI: 10.3390/ijms23084189
Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, et al. Bioprospecting for novel halophilic and halotolerant sources of hydrolytic enzymes in brackish, saline and hypersaline lakes of Romania. Microorganisms. 2020;8(12):1903.
DOI: 10.3390/microorganisms8121903
Agwu O, Oluwagunke T. Halotolerance of heterotrophic bacteria isolated from tropical coastal waters. Int. J. Sci. Bas. Appl. 2014;16(2):224-231.
Udosen CI, Umana SI. Population dynamics of microbial communities in mesotidal estuarine sediment of Iko river, Eastern Obolo, Akwa Ibom State, Nigeria. Archives of Current Research International. 2018;14:1-7.
DOI: 10.9734/ACRI/2018/37646
Udosen CI, Essien JP, Umana SI, Ekong UE, Nkanang AJ. Microbiological Properties and Population Dynamics of Atmosphere in Mesotidal Estuarine of Iko River, Akwa Ibom State, Nigeria. Journal of Advances in Biology & Biotechnology. 2018;17(4):1-9. DOI: 10.9734/JABB/2018/37643
Unimke AA, Ibiene AA, Okerentugba PO. Iko River estuary: Oil exploration and the microbial community shift. World Journal of Advanced Research and Reviews. 2021;10(3):25-32.
DOI: 10.30574/wjarr.2021.10.3.0509
Ekpe UJ, Ekanem U, Akpan ER. Temporal changes in some water quality parameters in Iko and Uta Ewa River, South Eastern Nigeria. Global Journal of Pure and Applied Sciences. 1995;1:63-68.
Benson NU, Etesin UM. Metal contamination of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River and environmental impact due to Utapete gas flare station, Nigeria. The Environmentalist. 2008;28(3): 195-202.
DOI: 10.1007/s10669-007-9127-3
Etesin U, UDOInyang E, Harry T. Seasonal variation of physicochemical parameters of water and sediments from Iko River, Nigeria. Journal of Environment and Earth Science. 2013;3(8):96-110.
Udoh JP, Ukpatu JE, Otoh AJ. Spatial variation in physico-chemical parameters of Eastern Obolo estuary, Niger Delta, Nigeria. Journal of Environment and Earth Science. 2013:163-172.
Effiong KS, Inyang AI, Robert UU. Spatial distribution and diversity of phytoplankton community in Eastern Obolo River Estuary, Niger Delta. Journal of Oceanography and Marine Science. 2018;9(1):1-4.
DOI: 10.5897/JOMS2016.0139
Food and Agriculture Organization. Standard operating procedure for soil electrical conductivity, soil/water, 1:5. Rome. 2021. Accessed: 10 November 2021.
Available:https://www.fao.org/documents/card/en/c/CB3354EN/
Food and Agriculture Organization. Standard operating procedure for soil pH determination. Rome. 2021.
Accessed: 10 November 2021.
Available:https://www.fao.org/documents/card/en/c/CB3637EN/
Food and Agriculture Organization. Standard operating procedure for soil organic carbon Walkley-Black method Titration and colorimetric method. Global Soil Laboratory Network. Rome. 2021. Accessed 10 November 2021.
Available:https://www.fao.org/3/ca7471en/ca7471en.pdf
Food and Agriculture Organization. Standard operating procedure for soil available phosphorus, Bray I and Bray II method. Rome. 2021. Accessed: 10 November 2021.
Available:https://www.fao.org/publications/card/en/c/CB3460EN/
Food and Agriculture Organization. Standard operating procedure for soil nitrogen - Kjeldahl method. Rome. 2021. Accessed: 10 November 2021.
Available:https://www.fao.org/publications/card/en/c/CB3642EN/
Cheesbrough M. District laboratory practice in tropical countries. (Part II). Cambridge Universities. 2004;80-81.
Sanders ER. Aseptic laboratory techniques: Plating methods. Journal of Visualized Experiments. 2012;(63):e3064.
DOI:10.3791/3064
Pitt JI, Hocking AD. Fungi and food spoilage. New York: Springer; 2009.
DOI:10.1007/978-0-387-92207-2
Watanabe T. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC press; 2002.
DOI: 10.1201/9781420040821
Campbell CK, Johnson EM. Identification of pathogenic fungi. John Wiley & Sons; 2013.
DOI:10.1002/9781118520055
Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology. 2008;57(5):503-7.
DOI:10.1007/s00284-008-9276-8
Chamekh R, Deniel F, Donot C, Jany JL, Nodet P, Belabid L. Isolation, identification and enzymatic activity of halotolerant and halophilic fungi from the Great Sebkha of Oran in Northwestern of Algeria. Mycobiology. 2019;47(2):230-41.
DOI: 10.1080/12298093.2019.1623979
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry. 1959;31(3): 426-8.
Ebong GA, John RC. Physicochemical properties, total hydrocarbon content, and trace metals of water and sediments from major River Estuaries within the Niger Delta Region of Nigeria. World Journal of Advanced Research and Reviews. 2021;12(2):587-597.
DOI: 10.30574/wjarr.2021.12.2.0650
WHO. Guidelines on recreational water quality. Vol. 1: Coastal and fresh waters. Geneva, Switzerland; 2021. Accessed: 24 July 2022.
Available: https://www.who.int/publications/i/item/9789240031302.
Wokoma OA, Friday U. The Sediment PhysicoChemical Characteristics in Sombreiro River, Rivers State, Nigeria. International Journal of Innovation. 2017;7(3):16.
Simeon EO, Idomo KB, Chioma F. Physicochemical Characteristics of Surface Water and Sediment of Silver River, Southern Ijaw, Bayelsa State, Niger Delta, Nigeria. American Journal of Environmental Science and Engineering. 2019;3(2):39-46.
DOI: 10.11648/j.ajese.20190302.12
Tukura BW, Anhwange BA, Mohammed Y, Usman NL. Translocation of trace metals in vegetable crops grown on irrigated soil along Mada River, Nasarawa State, Nigeria. International Journal of Modern Analytical and Separation Sciences. 2012;1(1):13-22.
Seiyaboh EI, Izah SC, Oweibi S. Physico-chemical characteristics of sediment from Sagbama Creek, Nigeria. Biotechnological Research. 2017;3(1):25-8.
Valerie G, Shweta N, Sarita N. Halophilic fungi in a polyhaline estuarine habitat. Journal of Yeast and Fungal Research. 2012;3(3):30-6.
DOI: 10.5897/JYFR12.007
Nazareth S, Gonsalves V. Aspergillus penicillioides—a true halophile existing in hypersaline and polyhaline econiches. Annals of microbiology. 2014;64(1):397-402.
DOI: 10.1007/s13213-013-0646-5
Ali FS, Akbar A, Prasongsuk S, Permpornsakul P, Yanwisetpakdee B, Lotrakul P, Punnapayak H, Asrar M, Ali I. Penicillium imranianum, a new species from the man-made solar saltern of Phetchaburi province, Thailand. Pakistan Journal of Botany. 2018;50(5):2055-2058.
Khan SA, Akbar A, Permpornsakul P, Yanwisetpakdee B, Chen X, Anwar M, Ali I. Molecular diversity of halophilic fungi isolated from mangroves ecosystem of miani hor, balochistan, pakistan. Pak J Bot. 2020;52(5):1823-1829.
DOI: 10.30848/PJB2020-5(34)
González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, del Rayo Sánchez-Carbente M, Folch-Mallol JL, Aranda E., et al. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresource Technology. 2019;279:287-296.
DOI: 10.1016/j.biortech.2019.02.002
Tafer H, Poyntner C, Lopandic K, Sterflinger K, Piñar G. Back to the salt mines: Genome and transcriptome comparisons of the halophilic fungus Aspergillus salisburgensis and its halotolerant relative Aspergillus sclerotialis. Genes. 2019;10(5):381.
DOI:10.3390/genes10050381
Dendouga W, Belhamra M. Screening of halotolerant microfungi isolated from hypersaline soils of Algerian Sahara for production of hydrolytic enzymes. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale. 2021; 95(1).
DOI: 10.4081/jbr.2022.10167
El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. Journal of Fungi. 2021;8(1): 23.
DOI: 10.3390/jof8010023
Ali I, Siwarungson N, Punnapayak H, Lotrakul P, Prasongsuk S, Bankeeree W, Rakshit SK. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak. J. Bot. 2014; 46(3):983-8.
Khattab OK, Ismail SA, Abosereh NA, Abo-Elnasr AA, Nour SA, Hashem AM. Optimization and comparative studies on activities of β-mannanase from newly isolated fungal and its mutant. Egyptian Pharmaceutical Journal. 2020;19(1):29.
DOI: 10.4103/epj.epj_48_19
Lima AC, Silva D, Silva V, Godoy M, Cammarota M, Gutarra M. β‐Mannanase production by Penicillium citrinum through solid‐state fermentation using açaí residual biomass (Euterpe oleracea). Journal of Chemical Technology & Biotechnology. 2021;96(10):2744-2754.
DOI: 10.1002/jctb.6818
Bangoria P, Divecha J, Shah AR. Production of mannooligosaccharides producing β-Mannanase by newly isolated Penicillium aculeatum APS1 using oil seed residues under solid state fermentation. Biocatalysis and Agricultural Biotechnology. 2021;34:102023.
DOI: 10.1016/j.bcab.2021.102023
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution. 2021;38(7):3022-3027.
DOI: 10.1093/molbev/msab120
Gholami-Shabani M, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M. Prospective Application of Aspergillus Species: Focus on Enzyme Production Strategies, Advances and Challenges. In: Natural Food Additives. IntechOpen; 2022.
DOI: 10.5772/intechopen.101726
Gonçalves C, Rodriguez-Jasso RM, Gomes N, Teixeira JA, Belo I. Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods. 2010;2(12): 2046-8.
DOI: 10.1039/c0ay00525h
Ali I, Akbar A, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Punnapayak H. Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. BioMed research international. 2014.
DOI: /10.1155/2014/106937
Ali I, Akbar A, Anwar M, Prasongsuk S, Lotrakul P, Punnapayak H. Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. BioMed research international. 2015.
DOI: 10.1155/2015/245649
Gunny AA, Arbain D, Gumba RE, Jong BC, Jamal P. Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresource Technology. 2014;155:177-181.
DOI: 10.1016/j.biortech.2013.12.101
Bano A, Chen X, Prasongsuk S, Akbar A, Lotrakul P, Punnapayak H, Anwar M, Sajid S, Ali I. Purification and characterization of cellulase from obligate halophilic Aspergillus flavus (TISTR 3637) and its prospects for bioethanol production. Applied Biochemistry and Biotechnology. 2019;189(4):1327-37.
DOI: 10.1007/s12010-019-03086-y.
Niyonzima FN, Veena SM, More SS. Industrial production and optimization of microbial enzymes. Microbial enzymes: Roles and applications in industries. 2020;115-35.
DOI: 10.1007/978-981-15-1710-5_5
Bellaouchi R, Abouloifa H, Rokni Y, Hasnaoui A, Ghabbour N, Hakkou A, et al. Characterization and optimization of extracellular enzymes production by Aspergillus niger strains isolated from date by-products. Journal of Genetic Engineering and Biotechnology. 2021; 19(1):1-8.
DOI: 10.1186/s43141-021-00145-y
Zhao B, Al Rasheed H, Ali I, Hu S. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresource Technology. 2021;319:124115.
DOI: 10.1016/j.biortech.2020.124115
Niknejad F, Moshfegh M, Najafzadeh MJ, Houbraken J, Rezaei S, Zarrini G, Faramarzi MA, Nafissi-Varcheh N. Halotolerant ability and α-amylase activity of some saltwater fungal isolates. Iranian Journal of Pharmaceutical Research. 2013;12(SUPPL.):111-7.
Martins DA, do Prado HF, Leite RS, Ferreira H, de Souza MM, Moretti RD, Gomes E. Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production. In: Integrated waste management-volume II. IntechOpen. 2011.
DOI: 10.5772/23377
Kumar YA, Singh PK, Singh AK, Masih HA, Peter K, Benjamin JC, Rath S. Production optimization of alpha amylase from Bacillus altitudinis. Int J Sci Eng Technol Res. 2014;3(4):654-73.
DOI: 10.13140/RG.2.2.14726.42569
Harini S, Kumaresan R. Production of cellulase from corn cobs by Aspergillus niger under submerged fermentation. International Journal of ChemTech Research. 2014;6(5):2900-2904.
Antia UE, Stephen NU, Onilude AA, Ibanga IA. Studies of the Nutritional, Environmental Effects and Repressive Nature of Simple Sugars on the Production of endo-β-mannanase by Aspergillus flavus PT7 on Solid State Fermentation. Journal of Advances in Biology and Biotechnology. 2019;21(4):1-12.
DOI: 10.9734/JABB/2019/v21i430101
Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology. 2017;15(1):115-26.
DOI:10.1016/j.jgeb.2017.02.001
Gunny AA, Arbain D, Jamal P, Gumba RE. Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi Journal of Biological Sciences. 2015;22(4):476-483. DOI:10.1016/j.sjbs.2014.11.021
-
Abstract View: 216 times
PDF Download: 73 times