Effect of Co-inoculations with Growth-Promoting Bacteria on Soybean Crop

Amanda M. Nascimento *

Agroteste, Minas Gerais, Brazil.

Ana C. A. Monteiro

Agroteste, Minas Gerais, Brazil.

Lucas Benedet

Agroteste, Minas Gerais, Brazil.

*Author to whom correspondence should be addressed.


Abstract

Aim: To evaluate the effect of co-inoculation with Pseudomonas fluorescens and P. fluorescens + Azospirillum brasilense on seedling emergence speed, development and soybean yield.

Study Design: Randomized complete block design with five treatments and eight replications.

Place and Duration of Study: Ibiporã, Paraná State, Brazil, during the 2020/21 season.

Methodology: The treatments consisted of untreated control (Cont); mineral fertilizer (Min); mineral fertilizer + (P. fluorescens + A. brasiliense) (Min – Psf + Azb); mineral fertilizer + P. fluorescens at two doses (Min – Psf 100 and Min – Psf 200). The effect in the soybean was assessed by determining the effect on the seedling emergence speed, crop development and crop yield. Data were subject to ANOVA at P = 0.10 Treatments means were separated using the Duncan test at a 0.10 level of significance.

Results: The inoculant treatments had non-significant effect on the emergence speed index and crop stand. However, the co-inoculation with P. fluorescens at two doses resulted in the best plant vigor. In addition, the treatments with co-inoculation increased shoots and root biomass, with Min – Psf 100 inducing more nodules. Finally, Min – Psf + Azb and Min – Psf 200 had very significant results for soybean yield.

Conclusion: This study revealed that the co-inoculation treatments tested led to great soybean response, especially for P. fluorescens at a doubled dose, which demonstrated a significant increase in soybean development and yield in relation to the control.

Keywords: Pseudomonas fluorescens, plant vigor, nodulation, crop yield


How to Cite

Nascimento , A. M., Monteiro , A. C. A., & Benedet , L. (2023). Effect of Co-inoculations with Growth-Promoting Bacteria on Soybean Crop. Journal of Advances in Biology & Biotechnology, 26(1), 24–32. https://doi.org/10.9734/jabb/2023/v26i1614

Downloads

Download data is not yet available.

References

Figueiredo PN. New challenges for public research organizations in agricultural innovation in developing economies: Evidence from Embrapa in Brazil's soybean industry. The Quarterly Review of Economics and Finance. 2016;62:21-32. DOI:https://doi.org/10.1016/j.qref.2016.07.011.

Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos - SAFRA 2020/2021 - Décimo segundo levantamento, setembro de 2021. Brasília: Conab; 2021.

Accessed 29 December 2021. Available: https://www.conab.gov.br/info-agro/safras/graos.

Companhia Nacional de Abastecimento. Produção nacional de grãos é estimada em 312,2 milhões de toneladas na safra 2022/23. Brasília: Conab; 2022. Accessed 01 December 2022. Available: https://rb.gy/gp7f6d.

Hungria M, Campo RJ, Mendes IC. Fixação biológica do nitrogênio na cultura da soja. Londrina, Embrapa Soja; 2001.

Guimarães VF, Klein J, Klein DK. Growth promotion and phosphate solubilization in soybean crop: seed coinoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens. Research, Society and Development. 2021;10(11):01-27. DOI:https://doi.org/10.33448/rsd-v10i11.20078.

Barbosa JZ, Hungria M, Sena JV, Poggere G, Reis AR, Corrêa RS. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Applied Soil Ecology. 2021;163:103913. DOI:https://doi.org/10.1016/j.apsoil.2021.103913.

Coelho LF, Freitas SDS, Melo AMTD, Ambrosano GMB. Interaction of fluorescent pseudomonads and bacillus spp. with distinct plant rhizospheres. Revista Brasileira de Ciência do Solo. 2007;31:1413-1420. DOI:https://doi.org/10.1590/S0100-06832007000600018.

Hungria M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Londrina: Embrapa Soja; 2011.

Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson, M. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control. 2006;36(3):358-367. DOI:https://doi.org/10.1016/j.biocontrol.2005.09.003.

Dobbelaere S, Vanderleyden J, Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 2003;22(2):107-149. DOI:https://doi.org/10.1080/713610853.

Jetiyanon K, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control. 2002;24(3):285-291. DOI:https://doi.org/10.1016/S1049-9644(02)00022-1.

Picard C, Bosco M. Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiology Ecology. 2005;53(3):349-357. DOI:https://doi.org/10.1016/j.femsec.2005.01.007.

Aslantaş R, Cakmakçi, R, Şahin, F. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae. 2007;111(4):371-377. DOI:https://doi.org/10.1016/j.scienta.2006.12.016.

Probanza A, Garcıa JL, Palomino MR, Ramos B, Mañero FG. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology. 2002;20(2):75-84.

DOI:https://doi.org/10.1016/S0929-1393(02)00007-0.

Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition. 2021;21(1):49-68. DOI:https://doi.org/10.1007/s42729-020-00342-7.

Oliveira MAD, Zucareli C, Spolaor LT, Domingues AR, Ferreira AS. Chemical composition of corn grains in response to mineral fertilization and inoculation with rhizobacteria. Revista Ceres. 2012;59(1):709-715. DOI:https://doi.org/10.1590/S0034-737X2012000500018.

Alvares CA, Stape JL, Sentelhas PJ, Gonçalves JLM, Sparovek G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2013;22(6):711-728. DOI:https://doi.org/10.1127/0941-2948/2013/0507.

Soil Survey Staff. Keys to Soil Taxonomy. 12th ed., Washington: US Department of Agriculture, Natural Resources Conservation Service; 2014.

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, et al. Sistema Brasileiro de Classificação de Solos, 5th ed., Brasília: Embrapa; 2018.

Ribeiro AC, Guimarães PTG, Alvarez VVH. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais, 5ª Aproximação. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais; 1999.

Maguire JD. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci.. 1962;2:176-177.

Vencovsky R, Cruz CD. Comparison of methods for adjustment of plot yields with unequal stand. I. Simulation data. Pesq. Agropec. Bras. 1991;26(5):647-657.

Canteri MG, Althaus RA, Virgens Filho JS, Giglioti EA, Godoy CV. SASM-AGRI- System for analysis and mean separation in agricultural assays using Scott Knott, Tukey and Duncan methods. Revista Brasileira de Agrocomputação. 2001;1(2):18-24.

R Core Team. R: A language an environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao, H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions. 2017;12(1):100-107. DOI:https://doi.org/10.1080/17429145.2017.1294212.

Jabborova DP, Enakiev YI, Davranov KD, Begmatov SA. Effect of co-inoculation with Bradyrhizobium japonicum and Pseudomonas putida on root morph-architecture traits, nodulation and growth of soybean in response to phosphorus supply under hydroponic conditions. Bulgarian Journal of Agricultural Science. 2018;24(6):1004-1011.

Calvert HE, Pence MK, Pierce M, Malik NS, Bauer WD. Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Canadian Journal of Botany. 1984;62(11):2375-2384. DOI:https://doi.org/10.1139/b84-324.

Moretti LG, Lazarini E, Bossolani JW, Parente TL, Caioni S, Araujo RS, Hungria M. Can additional inoculations increase soybean nodulation and grain yield? Agronomy Journal. 2018;110(2):715-721. DOI:https://doi.org/10.2134/agronj2017.09.0540.

Egamberdieva D, Wirth S, Li L, Abd-Allah EF, Lindström K. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered. 2016;8(4):433-438. DOI:https://doi.org/10.1080/21655979.2016.1250983.

León M, Yaryura PM, Montecchia MS, Hernandez AI, Correa OS, Pucheu NL, Garcia AF. Antifungal activity of selected indigenous Pseudomonas and Bacillus from the soybean rhizosphere. Int. J. Microbiol. 2009;572049.

DOI:https://doi.org/10.1155/2009/572049.

Velloso CCV, Oliveira CA, Gomes EA, Lana UGDP, Carvalho CG, Guimarães LJ.M, Pastina MM, Sousa SM. Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion. FEMS Microbiology Ecology. 2020;96(9),1: 16. DOI:https://doi.org/10.1093/femsec/fiaa157.

Mowafy AM, Fawzy MM, Gebreil A, Elsayed A. Endophytic Bacillus, Enterobacter, and Klebsiella enhance the growth and yield of maize. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 2021;71(4):237- 246. DOI:https://doi.org/10.1080/09064710.2021.1880621.