Unlocking Nutritional Potential: Multi-OMICS Strategies for Enhancing Millet Nutritional Traits

Pusarla Susmitha

Department of Agricultural and Horticultural Sciences (AHS), School of Agriculture and Food Technology (SAFT), Vignan's Foundation for Science, Technology and Research, Guntur- 522 213, Andhra Pradesh, India.

Manish Kapoor *

Punjabi University, Patiala, 147002, India.

Sanjay M

Department of Seed Science and Technology, University of Agricultural Sciences, Raichur, Karnataka, India.

Sundharan M

Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, India.

D. Keerthana

Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India.

Shaik Khaja Naimuddin

Territory production lead, Plant breeding and genetics, Pondicherry University, India.

Swapnil Srivastava

Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.

Dhanalakshmi T

Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bangalore 560065, India.

*Author to whom correspondence should be addressed.


Abstract

Millet grains have long been recognized for their nutritional significance, serving as staple foods for millions around the world. However, unlocking their full nutritional potential remains a crucial challenge. In this study, we explore the application of multi-OMICS (genomics, transcriptomics, proteomics, metabolomics, and phenomics) strategies to enhance the nutritional traits of millet grains. By integrating comprehensive molecular datasets, we aim to elucidate the genetic and biochemical pathways governing key nutritional attributes such as protein content, amino acid composition, micronutrient density, and antioxidant capacity in millets. Through targeted breeding and biotechnological interventions informed by multi-OMICS analyses, we seek to develop improved millet varieties with enhanced nutritional profiles and agronomic performance. This interdisciplinary approach holds great promise for addressing malnutrition and promoting food security, particularly in regions where millets are dietary staples. By harnessing the power of multi-OMICS technologies, we aim to unleash the full nutritional potential of millets, contributing to the development of sustainable and resilient food systems for future generations.

Keywords: multi, millets, future, interventions, amino acids, datasets


How to Cite

Susmitha , P., Kapoor, M., Sanjay M, Sundharan M, Keerthana, D., Naimuddin, S. K., Srivastava , S., & Dhanalakshmi T. (2024). Unlocking Nutritional Potential: Multi-OMICS Strategies for Enhancing Millet Nutritional Traits. Journal of Advances in Biology & Biotechnology, 27(6), 131–149. https://doi.org/10.9734/jabb/2024/v27i6875

Downloads

Download data is not yet available.

References

Adebiyi JA, Obadina AO, Adebo OA, Kayitesi E. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value‐added products. Crit. Rev. Food Sci. Nutr. 2018;58:463–474.

Andrews S. FastQC A quality control tool for high throughput sequence data; 2014.

Awan SA, Khan I, Tariq R, Rizwan M, Wang X, Zhang X, Huang L. Genome‐wide expression and physiological profiling of pearl millet genotype reveal the biological pathways and various gene clusters underlying salt resistance. Front. Plant Sci. 2022;13:849618.

Bandyopadhyay T, Swarbreck SM, Jaiswal V, Gupta R, Bentley AR, Griffiths H, Prasad M. Grain number and genotype drive nitrogen‐dependent yield response in the C4 model Setaria italica (L.) P. Beauv; 2020. DOI: 10.1101/2020.03.23.003004

Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology. 2012;30(6):555–561.

Bouché N, Yellin A,Snedden WA, Fromm H. Plant‐specific calmodulin‐binding proteins. Annu. Rev. Plant Biol. 2005;56:435–466.

Bray NL, Pimentel H, Melsted P, Pachter L. Near‐optimal probabilistic RNA‐seq quantification. Nat. Biotechnol. 2016;34:525–527.

Buels R, Yao E, Diesh CM, Hayes RD, Munoz‐Torres M, Helt G, Goodstein DM, et al. J Browse: A dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17:66.

Cannarozzi G, Plaza‐Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, De Castro E, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics. 2014;15(1). DOI: 10.1186/1471-2164-15-581

Ceasar SA, Maharajan T. The role of millets in attaining United Nation's sustainable developmental goals. Plants People Planet. 2022;4:345–349.

Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics (Oxford, England). 2018;34: i884–i890.

Colucci G, Apone F, Alyeshmerni N, Chalmers D, Chrispeels MJ. GCR1, the putative Arabidopsis G protein‐coupled receptor gene is cell cycle‐regulated, and its overexpression abolishes seed dormancy and shortens time to flowering. Proc. Natl. Acad. Sci. USA. 2002;99:4736–4741.

Com I. Citavi – literaturverwaltung und wissensorganisation; 2006.

Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA. Proline accumulation in plants: Roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (Iqbal N, Nazar R, Khan NA, eds),. New Delhi: Springer India; 2016;155–166.

Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. 2003;29 DOI: 10.1002/0471250953.bi1003s00

Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 2006;44:483–493.

Fan L, Li R, Pan J, Ding Z, Lin J. Endocytosis and its regulation in plants. Trends Plant Sci. 2015;20:388–397.

Fang J, Zhang Y, Liu T, Yan B, Li J, Dong L. Target‐site and metabolic resistance mechanisms to penoxsulam in barnyardgrass (Echinochloa crus‐galli (L.) P. Beauv). Journal of Agricultural and Food Chemistry. 2019;67(29):8085–8095.

FAO F. Food and agriculture organization of the United Nations. Rome; 2018 Avaialble:http://faostat.fao.org.

Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP‐seq enrichment using MACS. Nat. Protoc. 2012;7:1728–1740.

Fu Y, Cheng M, Li M, Guo X, Wu Y, Wang J. Identification and characterization of PLATZ transcription factors in wheat. Int. J. Mol. Sci. 2020;21:8934.

Gallie DR. The role of L‐ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J. Exp. Bot. 2013;64:433–443.

Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 2018;36:875–879.

González‐Morales SI, Chávez‐Montes RA, Hayano‐Kanashiro C, Alejo‐Jacuinde G, Rico‐Cambron TY, De Folter S, Herrera‐estrella L. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:E5232–E5241.

Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front. Plant Sci. 2015;6:157.

Guo L, Qiu J, Ye C, Jin G, Mao L, Zhang H, Yang X, et al. Echinochloa crus‐galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications. 2017;8(1). DOI: 10.1038/s41467-017-01067-5

Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, Poveda L, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Research. 2017;25(1):39–47.

Hu J, Chen B, Zhao J, Zhang F, Xie T, Xu K, et al. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat. Genet. 2022;54:694–704.

DOI: 10.1038/s41588-022-01055-6

Huang D, Sun M, Zhang A, Chen J, Zhang J, Lin C, Zhang H, et al. Transcriptional changes in pearl millet leaves under heat stress. Genes. 2021;12:1716.

Huerta‐Cepas J, Szklarczyk D, Heller D, Hernández‐Plaza A, Forslund SK, Cook H, Mende DR, et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research. 2018;47(D1):D309–D314.

Islam SMT, Tammi RS, Singla‐Pareek SL, Seraj ZI. Enhanced salinity tolerance and improved yield properties in Bangladeshi rice Binnatoa through Agrobacterium‐mediated transformation of PgNHX1 from Pennisetum glaucum. Acta Physiol. Plant. 2010;32:657–663.

Islam T, Manna M, Reddy MK. Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. Plos One. 2015;10:e0143344.

Ji Y, Lu X, Zhang H, Luo D, Zhang A, Sun M, Wu Q, et al. Transcriptome reveals the dynamic response mechanism of pearl millet roots under drought stress. Genes. 2021;12:1988.

Jiang LG, Li B, Liu SX, Wang HW, Li CP, Song SH, et al. Characterization of proteome variation during modern maize breeding. Mol. Cell Proteomics. 2019;18: 263–276. DOI: 10.1074/mcp.RA118.001021

Jin F, Liu J, Wu E, Yang P, Gao J, Gao X, Feng B. Leaf transcriptome analysis of broomcorn millet uncovers key genes and pathways in response to Sporisorium destruens. International Journal of Molecular Sciences. 2021;22(17):9542.

Jr FH, Dupont C. Hmisc: Harrell Miscellaneous. R package version 3.17‐1; 2015.

Juma SG, Kelonye F. Projected rainfall and temperature changes over Bungoma county in western Kenya by the year 2050 based precis modeling system. Ethiop. J. Env. Stud. Manag. 2016;9:625.

Kato‐Noguchi H. Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul. 2006;50:41–46.

Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, et al. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc. Natl. Acad. Sci. 2022;119: e2115640118.

DOI: 10.1073/pnas.2115640118

Lai X, Bendix C, Zhang Y, Schnable JC, Harmon FG. 72‐h diurnal RNA‐seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3‐h resolution. BMC Research Notes. 2021;14(1):10.1186/s13104-020-05431-5

Langmead B, Salzberg SL. Fast gapped‐read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359.

Li X, Gao J, Song J, Guo K, Hou S, Wang X, et al. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Mol. Plant. 2022 c;15:1367–1383. DOI: 10.1016/j.molp.2022.07.003

May MJ, Vernoux T, Leaver C, Montagu MV, Inze D. Glutathione homeostasis in plants: Implications for environmental sensing and plant development. J. Exp. Bot. 1998;49:649–667.

Molotoks A, Smith P, Dawson TP. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021;10:153.

Muthamilarasan M, Singh NK, Prasad M. Multi‐omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Adv. Genet. 2019; 103:1–38.

Muthamilarasan M, Prasad M. Small millets for enduring food security amidst pandemics. Trends Plant Sci. 2021;26:33–40.

Pan J, Li Z, Dai S, Ding H, Wang Q, Li X, Ding G, et al. Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Scientific Reports. 2020;10(1). DOI: 10.1038/s41598-020-70520-1

Qin L, Chen E, Li F, Yu X, Liu Z, Yang Y, Wang R, et al. Genome‐wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). International Journal of Molecular Sciences. 2020;21(22):8520.

Ramadoss A. Effects of drought on Eleusine coracana (L.) Gaertn. (Finger millet) and identification of microsatellite markers. University of Alberta Libraries; 2014. DOI: 10.7939/R3HX16015

Romero LC, Aroca MÁ, Laureano‐Marín AM, Moreno I, García I, Gotor C. Cysteine and cysteine‐related signaling pathways in Arabidopsis thaliana. Mol. Plant. 2014;7: 264–276.

Shahidi F, Chandrasekara A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods. 2013;5:570–581.

Shen J, Guo M, Wang Y, Yuan X, Dong S, Song X, Guo P. An investigation into the beneficial effects and molecular mechanisms of humic acid on foxtail millet under drought conditions. Plos One. 2020;15(6):e0234029.

Sun L, Liu L, Wang Y, Feng Y, Yang W, Wang D, Gao S, et al. Integration of metabolomics and transcriptomics for investigating the tolerance of foxtail millet (Setaria italica) to Atrazine Stress. Frontiers in Plant Science. 2022;13. DOI: 10.3389/fpls.2022.890550

Sun M, Lin C, Zhang A, Wang X, Yan H, Khan I, Wu B, et al. Transcriptome sequencing revealed the molecular mechanism of response of pearl millet root to heat stress. J. Agro. Crop. Sci. 2021;2 07:768–773.

Tatusova TA, Madden TL. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. Fems Microbiol. Lett. 1999;174:247–250.

Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high‐performance genomics data visualization and exploration. Briefings in Bioinformatics. 2012;14(2):178–192.

Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A, Lam HM, et al. Fast‐forward breeding for a food‐secure world. Trends Genet. 2021a;37:1124–1136.

Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing future crops: Genomics‐assisted breeding comes of age. Trends Plant Sci. 2021b;26:631–649.

Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 2017; 35:969–976.

Verma D, Singla‐Pareek SL, Rajagopal D, Reddy MK, Sopory SK. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 2007;32:621–628.

Vigani G, Morandini P, Murgia I. Searching iron sensors in plants by exploring the link among 2'‐OG‐dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency. Front. Plant Sci. 2013;4:169.

Wang T, Song H, Li P, Wei Y, Hu N, Chen Z, Wang W, et al. Transcriptome analysis provides insights into grain filling in foxtail millet (Setaria italica L.). International Journal of Molecular Sciences. 2020;21 (14):5031.

Wang X, Chen S, Ma X, Yssel AEJ, Chaluvadi SR, Johnson MS, Gangashetty P, et al. Genome sequence and genetic diversity analysis of an under‐domesticated orphan crop, white fonio (Digitaria exilis). GigaScience. 2021; 10(3).

DOI: 10.1093/gigascience/giab01

Watson‐Lazowski A, Papanicolaou A, Koller F, Ghannoum O. The transcriptomic responses of C4 grasses to subambient CO2 and low light are largely species specific and only refined by photosynthetic subtype. The Plant Journal. 2019;101(5):1170–1184. Portico.

Wedel C, Siegel TN. Genome‐wide analysis of chromatin structures in Trypanosoma brucei using high‐resolution MNase‐ChIP‐seq. Exp. Parasitol. 2017;180:2–12.

Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, et al. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. Biotechnol. Biofuels. 2021; 14:94.

Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, Jia L, et al. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nat. Commun. 2022;13:689.

Yan H, Bombarely A, Li S. DeepTE: A computational method for de novo classification of transposons with convolutional neural network. Bioinformatics (Oxford, England). 2020;36: 4269–4275.

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, Lin C, Wu B, et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat. Genet. 2023;55:507–518.

Yan Q, Li J, Lu L, Yi X, Yao N, Lai Z, Zhang J. Comparative transcriptome study of the elongating internode in elephant grass (Cenchrus purpureus) seedlings in response to exogenous gibberellin applications. Industrial Crops and Products. 2022;178:114653.

Zhang S, Xia Z, Li C, Wang X, Lu X, Zhang W, Ma H, et al. Chromosome‐scale genome assembly provides insights into speciation of allotetraploid and massive biomass accumulation of elephant grass (Pennisetum purpureum Schum.). Mol. Ecol. Resour. 2022;22: 2363–2378.

Yan Q, Wu F, Xu P, Sun Z, Li J, Gao L, Lu L, et al. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Mol. Ecol. Resour. 2021;21:526–542.

Yousaf L, Hou D, Liaqat H, Shen Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. (Ottawa, Ont.). 2021;142:110197.

Yu A, Zhao J, Wang Z, Cheng K, Zhang P, Tian G, Liu X, et al. Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids‐related pathways during germination process under PEG stress. BMC Plant Biology. 2020;20(1).

DOI: 10.1186/s12870-020-02483-4

Yuan Y, Liu C, Gao Y, Ma Q, Yang Q, Feng B. Proso millet (Panicum miliaceum L.): A potential crop to meet demand scenario for sustainable saline agriculture. Journal of Environmental Management. 2021;296:113216.

Zhou X, Stephens M. Genome‐wide efficient mixed‐model analysis for association studies. Nat. Genet. 2012;44:821–824.

Yuan Y, Liu L, Gao Y, Yang Q, Dong K, Liu T, Feng B. Comparative analysis of drought‐responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance. Industrial Crops and Products. 2022;177:114498.

Zhang A, Ji Y, Sun M, Lin C, Zhou P, Ren J, Luo D, et al. Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genom. 2021;22:568.

Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, et al. The genome of broomcorn millet. Nat. Commun. 2019;10:436.