Genomic Advancement in Wheat (Triticum aestivum L.): Harnessing Technological Breakthroughs for Future Strategies

Jana Akhila

Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara-144411, Punjab, India.

Manoj Kumar Pandey *

Department of Genetics and Plant Breeding, School of Agriculture, Lovely Professional University, Phagwara-144411, Punjab, India.

*Author to whom correspondence should be addressed.


Abstract

Wheat can be greatly improved by identifying genes that are significant to agronomy. Although progress in wheat genetics and genomics has been limited by the genome’s vast size and complexity. Wheat has a high-quality genome sequence in light of recent developments in genome sequencing and sequence assembly. Here, we propose that wheat biology can benefit from the same approaches that have been used to define biological systems in model species, such as the generation and characterization of mutants, methods for gene cloning, and enhanced transgenic technology. These tactics will encourage the establishment of wheat breeding programs and hasten the field of wheat biology. We also summarize current developments in functional genomics of wheat. In order to contribute to global food security, we conclude by talking about the future of wheat functional genomics and the sensible design-based molecular breeding of new wheat varieties. We suggest that researchers studying wheat should embrace the methods utilized for functional genomic analysis in other model species. One method for doing this is using gene cloning to find the gene causing an intriguing phenotype, deciphering the biological role of genes through the analysis of their corresponding mutants, and creating a related wheat mutant from the proposed wild-type gene to confirm the target gene’s functionality.

Keywords: Cloning, mutation, genetic transformation, whole genome sequencing


How to Cite

Akhila , J., & Pandey , M. K. (2024). Genomic Advancement in Wheat (Triticum aestivum L.): Harnessing Technological Breakthroughs for Future Strategies. Journal of Advances in Biology & Biotechnology, 27(6), 186–198. https://doi.org/10.9734/jabb/2024/v27i6878

Downloads

Download data is not yet available.

References

(IWGSC) IWGSC, Mayer KFX, Rogers J, Doležel J, Pozniak C, Eversole K, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (1979). 2014;345(6194):1251788.

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nature. 2011;478(7369):337–42.

Qian Q, Guo L, Smith SM, Li J. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev. 2016;3(3):283–94.

Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, et al. Rational design of high-yield and superior-quality rice. Nat Plants. 2017;3(4):1–5.

Zhang Q. Strategies for developing green super rice. Proceedings of the national Academy of Sciences. 2007;104(42): 16402–9.

Li ZK, Zhang F. Rice breeding in the post-genomics era: from concept to practice. Curr Opin Plant Biol. 2013;16(2):261–9.

Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, et al. Wheat functional genomics in the era of next generation sequencing: an update. Crop J. 2018;6(1):7–14.

Xia L, Ma Y, He Y, Jones HD. GM wheat development in China: current status and challenges to commercialization. J Exp Bot. 2012;63(5):1785–90.

Vasil V, Castillo AM, Fromm ME, Vasil IK. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/technology. 1992;10(6):667–74.

Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 1997;115(3):971–80.

Harwood WA. Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot. 2012;63(5):1791–8.

Shrawat AK, Armstrong CL. Development and application of genetic engineering for wheat improvement. CRC Crit Rev Plant Sci. 2018;37(5):335–421.

Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobacterium Protocols. 2015;1:189–98.

Wang K, Riaz B, Ye X. Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J. 2018;6(1):22–31.

Richardson T, Thistleton J, Higgins TJ, Howitt C, Ayliffe M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture (PCTOC). 2014;119:647–59.

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (1979). 1995;270(5243):1804–6.

Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature. 2005;435(7045):1122–5.

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–61.

Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci. 2010;6(3):228.

Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology. 1984;134(2–3):113–42.

Uauy C, Wulff BBH, Dubcovsky J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet. 2017;51:435–54.

Krasileva K V, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, et al. Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences. 2017;114(6):E913–21.

Wang Z, Li J, Chen S, Heng Y, Chen Z, Yang J, et al. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proceedings of the National Academy of Sciences. 2017;114(47):12614–9.

Periyannan S. Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases. New Phytologist. 2018; 219(1):45–51.

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–51.

Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun. 2016;7(1):12617.

Li J, Li Y, Ma L. CRISPR/Cas9‐based genome editing and its applications for functional genomic analyses in plants. Small Methods. 2019;3(3):1800473.

Wang K, Riaz B, Ye X. Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J. 2018;6(1):22–31.

Keller B, Wicker T, Krattinger SG. Advances in wheat and pathogen genomics: implications for disease control. Annu Rev Phytopathol. 2018;56:67–87.

Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science (1979). 1992;258(5084):985–7.

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences. 2003;100(25):15253–8.

Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164(2):655–64.

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences. 2003;100(25):15253–8.

Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science (1979). 2009;323(5919):1360–3.

Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science (1979). 2009;323(5919):1357–60.

Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, et al. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC–NBS–LRR sequence in wheat. Mol Plant. 2014;7(12):1740–55.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science (1979). 2013;341(6147):786–8.

Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science (1979). 2013;341(6147): 783–6.

Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:1–7.

Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet. 2019;51(7):1099–105.

Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet. 2019;51(7):1106–12.

Shao A, Ma W, Zhao X, Hu M, He X, Teng W, et al. The auxin biosynthetic tryptophan Aminotransferase related TaTAR2. 1-3A increases grain yield of wheat. Plant Physiol. 2017;174(4):2274–88.

Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, et al. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature. 2014;514(7520):88–91.

Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science (1979). 2006;314(5803):1298–301.

Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science (1979). 2008;322(5898):101–4.

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10.

Ling Z, Liu X, Wang Y, Li L, Xiang C. Pyrosequencing analysis of the salivary microbiota of healthy Chinese children and adults. Microb Ecol. 2013;65:487–95.

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496 (7443):91–5.

Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science (1979). 2014;345(6194):1249721.

Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87–90.

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–10.

Xie J, Huo N, Zhou S, Wang Y, Guo G, Deal KR, et al. Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes. Journal of genetics and genomics. 2017;44(1):51–61.

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science (1979). 2017; 357(6346):93–7.

Consortium IWGS. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science (1979). 2018;361.

Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science (1979). 2008;322(5898):101–4.

Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science (1979). 2017;357 (6346):93–7.

Consortium IWGS. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science (1979). 2018;361.

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’genes encode mutant gibberellin response modulators. Nature. 1999;400 (6741):256–61.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 2012;30(2):174–8.

Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:1–7.

Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol. 2017;35(8):793–6.

Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol. 2016;34(6):652–5.

Shao A, Ma W, Zhao X, Hu M, He X, Teng W, et al. The auxin biosynthetic tryptophan aminotransferase related TaTAR2. 1-3A increases grain yield of wheat. Plant Physiol. 2017;174(4):2274–88.

Ouyang X, Hong X, Zhao X, Zhang W, He X, Ma W, et al. Knock out of the Phosphate 2 gene TaPHO2-A1 improves phosphorus uptake and grain yield under low phosphorus conditions in common wheat. Sci Rep. 2016;6(1):29850.

Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants. 2018;4(9):662–8.

Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science (1979). 2009;323(5919):1360–3.

Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science (1979). 2009;323(5919):1357–60.

Zhang C, Huang L, Zhang H, Hao Q, Lyu B, Wang M, et al. An ancestral NB-LRR with duplicated 3′ UTRs confers stripe rust resistance in wheat and barley. Nat Commun. 2019;10(1):4023.

Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science (1979). 2013;341(6147):786–8.

Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science (1979). 2013;341 (6147):783–6.

Zou S, Wang H, Li Y, Kong Z, Tang D. The NB‐LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytologist. 2018;218(1):298–309.

Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant. 2018;11(6):874–8.

He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, et al. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant. 2018;11(6):879–82.

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. ‘Green revolution’genes encode mutant gibberellin response modulators. Nature. 1999;400 (6741):256–61.

Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, Del Blanco A, et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics. 2016;129:1099–112.

Slade AJ, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, et al. Development of high amylose wheat through TILLING. BMC Plant Biol. 2012;12:1–17.

Consortium IWGS. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science (1979). 2018;361.

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–51.

Santhoshini A, Dubey N, Avinashe HA, Thonta R, Kumar R. Inheritance Studies in Segregating Population of Bread Wheat (Triticum aestivum L.). International Journal of Environment and Climate Change. 2023;13(9):277-87.

Paudel P, Pandey MK, Subedi M, Paudel P, Kumar R. Genomic approaches for improving drought tolerance in wheat (Triticum aestivum L.): A Comprehensive Review. Plant Archives. 2024;24(1):1289-300.

Tutlani A, Kumar R, Kumari S, Chouhan S. Correlation and path analysis for yield and its phenological, physiological, morphological and biochemical traits under salinity stress in chickpea (Cicer arietinum L.). International Journal of Bio-resource and Stress Management. 2023;14(Jun, 6):878-90.

Rathore M, Yellanki P, Kumar, R, Tutlani A, Aggarwal N. Enhancing seed quality and insect management in wheat (Triticum aestivum L.) through optimization of storage treatments with natural and chemical compounds. Plant Archives. 2024;24(1):26-36.

Nisar S, Rashid Z, Touseef A, Kumar R, Nissa SU, Faheem J, Angrez A, Sabina N, Shabeena M, Tanveer A, Amal S. Productivity of fodder maize (Zea mays L.) SFM-1 under varied sowing dates and nitrogen levels. International Journal of Bio-resource and Stress Management. 2024;15(Jan, 1):01-12.

Aggarwal N, Rathore M, Kumar, R, Tutlani A, Kumari S and Yellanki P. Identification of Induced Chemical Mutants for Improving Yield and Its Attributing Traits in Wheat (Triticum aestivum L.) Against Changing Climate. Agricultural Science Digest. 2024; 1-12.

Vasil IK. Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant cell reports. 2007;26:1133-54.

Eid MH. Estimation of heritability and genetic advance of yield traits in wheat (Triticum aestivum L.) under drought condition. International Journal of Genetics and Molecular Biology. 2009;1(7): 115-20.